Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

High Efficiency Direct Gene Transfer to Plants

Abstract

The efficiency of direct gene transfer to plant protoplasts has been increased more than 1000 fold over that previously reported. On the order of 2 percent of all colonies recovered without selection were transformed. The improvement was due to: treatment of protoplasts with a high voltage electric pulse (electroporation), optimization of the polyethylene glycol (PEG) concentration, addition of PEG after the DNA and the application of a heat shock (5 minutes at 45°C). These factors are of equal importance in achieving high transformation efficiencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Paszkowski, J., Shillito, R.D., Saul, M., Mandak, V., Hohn, T., Hohn, B. and Potrykus, I. 1984. Direct gene transfer to plants, EMBO J. 3: 2717–2722.

    Article  CAS  Google Scholar 

  2. Hain, R., Stabel, P., Czernilofski, A.P., Steinbiss, H.H., Herrera-Estrella, L. and Schell, J. 1985. Uptake, integration, expression and genetic transmission of a selectable chimeric gene by plant protoplasts. Mol. Gen. Genet. 199: 161–168.

    Article  CAS  Google Scholar 

  3. Potrykus, I., Paszkowski, J., Saul, M., Petruska, J. and Shillito, R.D. 1985. Molecular and general genetics of a hybrid foreign gene introduced into tobacco by direct gene transfer. Mol. Gen. Genet. 199: 169–177.

    Article  CAS  Google Scholar 

  4. Zambryski, P., Herrera-Estrella, L., de Block, M., van Montague, M. and Schell, J. 1984. The use of the Ti plasmid of A. tumefaciens to study the transfer of foreign DNA in plant cells: New vectors and methods, p. 253. In: Genetic Engineering, Vol. 6. A. Holaender and J. Setlow (eds.), Plenum Press, New York.

    Chapter  Google Scholar 

  5. De Framond, A.J., Barton, K.A. and Chilton, M.-D. 1983. Mini-Ti—a new vector strategy for plant genetic engineering. Biotechnology 1: 262–269.

    Google Scholar 

  6. Potrykus, I., Saul, M., Petruska, J., Paszkowski, J. and Shillito, R.D. 1985. Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199: 183–188.

    Article  CAS  Google Scholar 

  7. Lörz, H., Baker, B. and Schell, J. 1985. Gene transfer to cereal cells mediated by protoplast transformation. Mol. Gen. Genet. 199: 178–182.

    Article  Google Scholar 

  8. Krens, F.A., Molendijk, L., Wullems, G.J. and Schilperoort, R.A. 1982. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296: 72–74.

    Article  CAS  Google Scholar 

  9. Caboche, M. and Deshayes, A. 1984. Utilisation de liposomes pour la transformation de protoplastes de mesophyll de tabac par plasmide recombinant de E. coli leur conferent la resistance à la kanamycine. C. R. Acad. Sci. (Paris) 299: 663–666.

    CAS  Google Scholar 

  10. Neumann, E., Schaeffer-Ridder, M., Wang, Y. and Hofschneider, P.H. 1982. Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J. 1: 841–845.

    Article  CAS  Google Scholar 

  11. Potter, H., Weir, L. and Leder, P. 1984. Enhancer-dependent expression of human k immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA. 81: 7161–7165.

    Article  CAS  Google Scholar 

  12. Shillito, R.D., Paszkowski, J. and Potrykus, I. 1983. Agarose plating and a bead-type culture technique enable and stimulate development of protoplast-derived colonies in a number of plant species. Plant Cell Rep. 2: 244–247.

    Article  CAS  Google Scholar 

  13. Falkner, F.G., Neumann, E. and Zachau, H.G. 1984. Tissue specificity of the initiation of immunoglobulin k gene transcription. Hoppe-Seyler's Z. Physiol. Chem. 365: 1331–1343.

    Article  CAS  Google Scholar 

  14. Maliga, P., Breznovitz, A. and Marton, L. 1973. Streptomycin resistant plants from callus cultures of tobacco. Nature New Biol. 244: 29–30.

    Article  CAS  Google Scholar 

  15. Nagy, J.I. and Maliga, P. 1976. Callus induction and plant regeneration from mesophyll protoplasts of N. sylvestris. Z. Pflanzenphysiol. 78: 453–455.

    Article  Google Scholar 

  16. Paszkowski, J. and Saul, M. 1985. Direct gene transfer to plants. In: Methods in Enzymology, 118 (in press). A. Weissbach and H. Weissbach, (Eds.), Academic Press, Orlando, FL.

    Google Scholar 

  17. Kao, K.N. and Michayluk, M.R. 1975. Nutritional requirements for growth of Vicia hajastana cells at very low population density in liquid medium. Planta 126: 105–110.

    Article  CAS  Google Scholar 

  18. Linsmaier, E.M. and Skoog, F. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18: 100–127.

    Article  CAS  Google Scholar 

  19. Potrykus, I. and Shillito, R.D. 1985. Protoplasts: isolation, culture, plant regeneration. In: Methods in Enzymology, 118, (in press). A. Weissbach and H. Weissbach, (Eds.), Academic Press, Orlando, FL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shillito, R., Saul, M., Paszkowski, J. et al. High Efficiency Direct Gene Transfer to Plants. Nat Biotechnol 3, 1099–1103 (1985). https://doi.org/10.1038/nbt1285-1099

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1285-1099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing