Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Refinement and standardization of synthetic biological parts and devices

Abstract

The ability to quickly and reliably engineer many-component systems from libraries of standard interchangeable parts is one hallmark of modern technologies. Whether the apparent complexity of living systems will permit biological engineers to develop similar capabilities is a pressing research question. We propose to adapt existing frameworks for describing engineered devices to biological objects in order to (i) direct the refinement and use of biological 'parts' and 'devices', (ii) support research on enabling reliable composition of standard biological parts and (iii) facilitate the development of abstraction hierarchies that simplify biological engineering. We use the resulting framework to describe one engineered biological device, a genetically encoded cell-cell communication receiver named BBa_F2620. The description of the receiver is summarized via a 'datasheet' similar to those widely used in engineering. The process of refinement and characterization leading to the BBa_F2620 datasheet may serve as a starting template for producing many standardized genetically encoded objects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: A prototypical 'datasheet' that summarizes current knowledge of the behavior of the receiver BBa_F2620.

Similar content being viewed by others

References

  1. Arkin, A. & Fletcher, D. Fast, cheap and somewhat in control. Genome Biol. 7, 114 (2006).

    Article  Google Scholar 

  2. Dyson, F. The Darwinian interlude. Technology Review. <http://www.technologyreview.com/read_article.aspx?ch=specialsections&sc=stemcell&id=16368> (2005).

    Google Scholar 

  3. Rucker, R. Wetware. (Avon Books, New York, 1988).

    Google Scholar 

  4. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).

    Article  CAS  Google Scholar 

  5. Sellers, W. On a uniform system of screw threads. J. Franklin Inst. 47, 344 (1864).

    Google Scholar 

  6. Knight, T. Idempotent vector design for standard assembly of Biobricks. MIT Synthetic Biology Working Group Technical Reports. <http://hdl.handle.net/1721.1/21168> (2003).

    Google Scholar 

  7. Endy, D., Deese, I. & Wadey, C. Adventures in synthetic biology. Nature 438, 449–453 (2005).

    Article  CAS  Google Scholar 

  8. Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102, 12678–12683 (2005).

    Article  CAS  Google Scholar 

  9. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    Article  CAS  Google Scholar 

  10. Texas Instruments. TTL logic: standard TTL, Schottky, low-power Schottky. (Texas Instruments Incorporated, Dallas, Texas, 1988).

  11. Ward, A. & Halstead, R.H. Computation structures. (MIT Press, Cambridge, Massachusetts, USA, 1990).

    Google Scholar 

  12. Brindley, K. Sensors and transducers. (Heinemann Professional Publishing, Portsmouth, New Hampshire, USA, 1988).

    Google Scholar 

  13. de Silva, C.W. Sensors and Actuators: Control System Instrumentation. (CRC Press, Boca Raton, Florida, 2007).

    Book  Google Scholar 

  14. Boettcher, K.J. & Ruby, E.G. Detection and quantification of Vibrio fischeri autoinducer from symbiotic squid light organs. J. Bacteriol. 177, 1053–1058 (1995).

    Article  CAS  Google Scholar 

  15. Winson, M.K. et al. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol. Lett. 163, 185–192 (1998).

    Article  CAS  Google Scholar 

  16. French, C. et al. Arsenic biosensor: a step further. BMC Syst. Biol. 1 Suppl 1, S11 (2007).

    Article  Google Scholar 

  17. Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002).

    Article  CAS  Google Scholar 

  18. Mayo, A.E., Setty, Y., Shavit, S., Zaslaver, A. & Alon, U. Plasticity of the cis-regulatory input function of a gene. PLoS Biol. 4, e45 (2006).

    Article  Google Scholar 

  19. Anderson, J.C., Voigt, C.A. & Arkin, A.P. Environmental signal integration by a modular AND gate. Mol. Syst. Biol. 3, 133 (2007).

    Article  Google Scholar 

  20. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  21. BBa_F2620. Registry of Standard Biological Parts. <http://partsregistry.org/Part:BBa_F2620>

  22. Nealson, K.H. & Hastings, J.W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Mol. Biol. Rev. 43, 496–518 (1979).

    CAS  Google Scholar 

  23. Nealson, K.H. Autoinduction of bacterial luciferase. Occurrence, mechanism and significance. Arch. Microbiol. 112, 73–79 (1977).

    Article  CAS  Google Scholar 

  24. Engebrecht, J. & Silverman, M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 81, 4154–4158 (1984).

    Article  CAS  Google Scholar 

  25. Schaefer, A.L., Hanzelka, B.L., Eberhard, A. & Greenberg, E.P. Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J. Bacteriol. 178, 2897–2901 (1996).

    Article  CAS  Google Scholar 

  26. Weiss, R. & Knight, T.F. Engineered communications for microbial robotics. in DNA 2000, Lecture Notes in Computer Science, vol. 2054, DNA Computing: 6th International Workshop on DNA-Based Computers, Leiden, The Netherlands, June 13–17, 2000 (ed. Condon, A.) 1–16 (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  27. Andersen, J.B. et al. GFP-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl. Environ. Microbiol. 67, 575–585 (2001).

    Article  CAS  Google Scholar 

  28. Lindsay, A. & Ahmer, B.M.M. Effect of sdiA on biosensors of N-acylhomoserine lactones. J. Bacteriol. 187, 5054–5058 (2005).

    Article  CAS  Google Scholar 

  29. Collins, C.H., Arnold, F.H. & Leadbetter, J.R. Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Mol. Microbiol. 55, 712–723 (2005).

    Article  CAS  Google Scholar 

  30. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    Article  CAS  Google Scholar 

  31. You, L., Cox, R.S., Weiss, R. & Arnold, F.H. Programmed population control by cell-cell communication and regulated killing. Nature 428, 868–871 (2004).

    Article  CAS  Google Scholar 

  32. Glick, B.R. Metabolic load and heterologous gene expression. Biotechnol. Adv. 13, 247–261 (1995).

    Article  CAS  Google Scholar 

  33. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Accurate prediction of gene feedback circuit behavior from component properties. Mol. Syst. Biol. 3, 143 (2007).

    Article  Google Scholar 

  34. Collins, C.H., Leadbetter, J.R. & Arnold, F.H. Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat. Biotechnol. 24, 708–712 (2006).

    Article  CAS  Google Scholar 

  35. Yokobayashi, Y., Weiss, R. & Arnold, F.H. Directed evolution of a genetic circuit. Proc. Natl. Acad. Sci. USA 99, 16587–16591 (2002).

    Article  CAS  Google Scholar 

  36. Haseltine, E.L. & Arnold, F.H. Synthetic gene circuits: design with directed evolution. Annu. Rev. Biophys. Biomol. Struct. 36, 1–19 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Knight; R. Rettberg; members of the Endy, Knight and Sauer labs and staff of the Registry of Standard Biological Parts for discussions, advice and materials throughout the work. We thank R. Brent, U. RajBhandary, C. Smolke, B. Studier and anonymous reviewers for comments on earlier versions of this manuscript. This research was supported by grants to D.E. from the US National Science Foundation, Defense Advanced Research Projects Agency and National Institutes of Health. B.C. was supported by a National University of Ireland training fellowship. Additional support was provided by the Massachusetts Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

B.C. and D.E. initiated the work. B.C., D.E. and A.L. designed the experiments. B.C. and A.L. performed the experiments. B.C., A.L. and D.E. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Drew Endy.

Supplementary information

Supplementary Text and Figures

Figures 1–5, Tables 1–3 (PDF 1560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26, 787–793 (2008). https://doi.org/10.1038/nbt1413

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1413

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing