Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts

Abstract

Cardiomyocytes derived from human embryonic stem (hES) cells potentially offer large numbers of cells to facilitate repair of the infarcted heart. However, this approach has been limited by inefficient differentiation of hES cells into cardiomyocytes, insufficient purity of cardiomyocyte preparations and poor survival of hES cell–derived myocytes after transplantation. Seeking to overcome these challenges, we generated highly purified human cardiomyocytes using a readily scalable system for directed differentiation that relies on activin A and BMP4. We then identified a cocktail of pro-survival factors that limits cardiomyocyte death after transplantation. These techniques enabled consistent formation of myocardial grafts in the infarcted rat heart. The engrafted human myocardium attenuated ventricular dilation and preserved regional and global contractile function after myocardial infarction compared with controls receiving noncardiac hES cell derivatives or vehicle. The ability of hES cell–derived cardiomyocytes to partially remuscularize myocardial infarcts and attenuate heart failure encourages their study under conditions that closely match human disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protection of hES cell–derived cardiomyocyte grafts by the pro-survival cocktail.
Figure 2: Histological evaluation of human myocardial grafts at 4 weeks.
Figure 3: Echocardiographic effects of hES cell–derived cardiomyocyte grafts on postinfarct ventricular function.
Figure 4: Evaluation of the effects of hES cell–derived cardiomyocyte grafts on postinfarct ventricular function by magnetic resonance imaging (MRI).

References

  1. Mallory, G.K., White, P.D. & Salcedo-Salgar, J. The speed of healing of myocardial infarcts: a study of the pathologic anatomy in seventy-two cases. Am. Heart J. 18, 647–671 (1939).

    Article  Google Scholar 

  2. Rumiantsev, P. Growth and Hyperplasia of Cardiac Muscle Cells (Harwood, London/New York, 1991).

    Google Scholar 

  3. Pasumarthi, K.B. & Field, L.J. Cardiomyocyte cell cycle regulation. Circ. Res. 90, 1044–1054 (2002).

    Article  CAS  Google Scholar 

  4. Rubart, M. & Field, L.J. Cardiac regeneration: repopulating the heart. Annu. Rev. Physiol. 68, 29–49 (2006).

    Article  CAS  Google Scholar 

  5. Laflamme, M.A. & Murry, C.E. Regenerating the heart. Nat. Biotechnol. 23, 845–856 (2005).

    Article  CAS  Google Scholar 

  6. Dimmeler, S., Zeiher, A.M. & Schneider, M.D. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest. 115, 572–583 (2005).

    Article  CAS  Google Scholar 

  7. Murry, C.E., Field, L.J. & Menasche, P. Cell-based cardiac repair: reflections at the 10-year point. Circulation 112, 3174–3183 (2005).

    Article  Google Scholar 

  8. Xu, C., Police, S., Rao, N. & Carpenter, M.K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501–508 (2002).

    Article  CAS  Google Scholar 

  9. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    Article  CAS  Google Scholar 

  10. Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

    Article  CAS  Google Scholar 

  11. McDevitt, T.C., Laflamme, M.A. & Murry, C.E. Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt signaling pathway. J. Mol. Cell. Cardiol. 39, 865–873 (2005).

    Article  CAS  Google Scholar 

  12. Snir, M. et al. Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H2355–H2363 (2003).

    Article  CAS  Google Scholar 

  13. Laflamme, M.A. et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol. 167, 663–671 (2005).

    Article  CAS  Google Scholar 

  14. Kehat, I. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22, 1282–1289 (2004).

    Article  CAS  Google Scholar 

  15. Xue, T. et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111, 11–20 (2005).

    Article  Google Scholar 

  16. Leobon, B. et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc. Natl. Acad. Sci. USA 100, 7808–7811 (2003).

    Article  CAS  Google Scholar 

  17. Rubart, M., Soonpaa, M.H., Nakajima, H. & Field, L.J. Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J. Clin. Invest. 114, 775–783 (2004).

    Article  CAS  Google Scholar 

  18. Weier, H.U. et al. Two-color hybridization with high complexity chromosome-specific probes and a degenerate alpha satellite probe DNA allows unambiguous discrimination between symmetrical and asymmetrical translocations. Chromosoma 100, 371–376 (1991).

    Article  CAS  Google Scholar 

  19. Shi, Y., Evans, J.E. & Rock, K.L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    Article  CAS  Google Scholar 

  20. Zvibel, I., Smets, F. & Soriano, H. Anoikis: roadblock to cell transplantation? Cell Transplant. 11, 621–630 (2002).

    Article  Google Scholar 

  21. Cao, G. et al. In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci. 22, 5423–5431 (2002).

    Article  CAS  Google Scholar 

  22. Baines, C.P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662 (2005).

    Article  CAS  Google Scholar 

  23. Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658 (2005).

    Article  CAS  Google Scholar 

  24. Ardehali, H., O'Rourke, B. & Mitochondrial, K. ATP channels in cell survival and death. J. Mol. Cell. Cardiol. 39, 7–16 (2005).

    Article  CAS  Google Scholar 

  25. Davis, M.E. et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl. Acad. Sci. USA 103, 8155–8160 (2006).

    Article  CAS  Google Scholar 

  26. Montolio, M., Tellez, N., Biarnes, M., Soler, J. & Montanya, E. Short-term culture with the caspase inhibitor z-VAD.fmk reduces beta cell apoptosis in transplanted islets and improves the metabolic outcome of the graft. Cell Transplant. 14, 59–65 (2005).

    Article  Google Scholar 

  27. Zhang, M. et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33, 907–921 (2001).

    Article  CAS  Google Scholar 

  28. Zuppinger, C., Eppenberger-Eberhardt, M. & Eppenberger, H.M. N-Cadherin: structure, function and importance in the formation of new intercalated disc-like cell contacts in cardiomyocytes. Heart Fail. Rev. 5, 251–257 (2000).

    Article  CAS  Google Scholar 

  29. Nussbaum, J. et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 21, 1345–1357 (2007).

    Article  CAS  Google Scholar 

  30. Swijnenburg, R.J. et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112, I166–I172 (2005).

    PubMed  Google Scholar 

  31. Contreras, J.L. et al. Cytoprotection of pancreatic islets before and early after transplantation using gene therapy. Kidney Int. 61, 79–84 (2002).

    Article  Google Scholar 

  32. Nakano, M. et al. Caspase-3 inhibitor prevents apoptosis of human islets immediately after isolation and improves islet graft function. Pancreas 29, 104–109 (2004).

    Article  CAS  Google Scholar 

  33. Schierle, G.S. et al. Caspase inhibition reduces apoptosis and increases survival of nigral transplants. Nat. Med. 5, 97–100 (1999).

    Article  CAS  Google Scholar 

  34. Emgard, M. et al. Both apoptosis and necrosis occur early after intracerebral grafting of ventral mesencephalic tissue: a role for protease activation. J. Neurochem. 86, 1223–1232 (2003).

    Article  CAS  Google Scholar 

  35. Guerette, B. et al. Prevention by anti-LFA-1 of acute myoblast death following transplantation. J. Immunol. 159, 2522–2531 (1997).

    CAS  PubMed  Google Scholar 

  36. Skuk, D., Caron, N.J., Goulet, M., Roy, B. & Tremblay, J.P. Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms. J. Neuropathol. Exp. Neurol. 62, 951–967 (2003).

    Article  CAS  Google Scholar 

  37. Gnecchi, M. et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 11, 367–368 (2005).

    Article  CAS  Google Scholar 

  38. Gnecchi, M. et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20, 661–669 (2006).

    Article  CAS  Google Scholar 

  39. Ebelt, H. et al. Cellular cardiomyoplasty: improvement of left ventricular function correlates with the release of cardioactive cytokines. Stem Cells 25, 236–244 (2007).

    Article  CAS  Google Scholar 

  40. Kinnaird, T. et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 94, 678–685 (2004).

    Article  CAS  Google Scholar 

  41. Laflamme, M.A., Zbinden, S., Epstein, S.E. & Murry, C.E. Cell-based cardiac repair: pathophysiologic mechanisms. Annu. Rev. Pathol. Mech. Dis. 2, 307–339 (2007).

    Article  CAS  Google Scholar 

  42. Rubart, M. et al. Physiological coupling of donor and host cardiomyocytes after cellular transplantation. Circ. Res. 92, 1217–1224 (2003).

    Article  CAS  Google Scholar 

  43. Tallini, Y.N. et al. Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc. Natl. Acad. Sci. USA 103, 4753–4758 (2006).

    Article  CAS  Google Scholar 

  44. Smith, J.C., Price, B.M., Van Nimmen, K. & Huylebroeck, D. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345, 729–731 (1990).

    Article  CAS  Google Scholar 

  45. Nakajima, Y., Yamagishi, T., Ando, K. & Nakamura, H. Significance of bone morphogenetic protein-4 function in the initial myofibrillogenesis of chick cardiogenesis. Dev. Biol. 245, 291–303 (2002).

    Article  CAS  Google Scholar 

  46. Ladd, A.N., Yatskievych, T.A. & Antin, P.B. Regulation of avian cardiac myogenesis by activin/TGFbeta and bone morphogenetic proteins. Dev. Biol. 204, 407–419 (1998).

    Article  CAS  Google Scholar 

  47. Sugi, Y. & Lough, J. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev. Biol. 168, 567–574 (1995).

    Article  CAS  Google Scholar 

  48. Lough, J. et al. Combined BMP-2 and FGF-4, but neither factor alone, induces cardiogenesis in non-precardiac embryonic mesoderm. Dev. Biol. 178, 198–202 (1996).

    Article  CAS  Google Scholar 

  49. Barron, M., Gao, M. & Lough, J. Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Dev. Dyn. 218, 383–393 (2000).

    Article  CAS  Google Scholar 

  50. Xu, C., Police, S., Hassanipour, M. & Gold, J.D. Cardiac bodies: a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells Dev. 15, 631–639 (2006).

    Article  CAS  Google Scholar 

  51. Rao, B.M. & Zandstra, P.W. Culture development for human embryonic stem cell propagation: molecular aspects and challenges. Curr. Opin. Biotechnol. 16, 568–576 (2005).

    Article  CAS  Google Scholar 

  52. Zandstra, P.W. & Nagy, A. Stem cell bioengineering. Annu. Rev. Biomed. Eng. 3, 275–305 (2001).

    Article  CAS  Google Scholar 

  53. Beqqali, A., Kloots, J., Ward-van Oostwaard, D., Mummery, C. & Passier, R. Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells 24, 1956–1967 (2006).

    Article  CAS  Google Scholar 

  54. Bauwens, C., Yin, T., Dang, S., Peerani, R. & Zandstra, P.W. Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol. Bioeng. 90, 452–461 (2005).

    Article  CAS  Google Scholar 

  55. Zandstra, P.W. et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 9, 767–778 (2003).

    Article  CAS  Google Scholar 

  56. Xu, C., Police, S., Hassanipour, M. & Gold, J.D. Cardiac bodies: a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells Dev. 15, 631–639 (2006).

    Article  CAS  Google Scholar 

  57. Gold, J. et al. Efficient serum-free generation of cardiomyocytes from human embryonic stem cells in the absence of embryoid bodies (abstract). in Circulation 112 (17, Suppl. S), U62–U62 (2005).

    Google Scholar 

  58. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  59. Xu, C. et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971–974 (2001).

    Article  CAS  Google Scholar 

  60. Bialik, S. et al. The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ. Res. 85, 403–414 (1999).

    Article  CAS  Google Scholar 

  61. Malhotra, R. & Brosius, F.C., III Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J. Biol. Chem. 274, 12567–12575 (1999).

    Article  CAS  Google Scholar 

  62. Shimizu, S., Konishi, A., Kodama, T. & Tsujimoto, Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. USA 97, 3100–3105 (2000).

    Article  CAS  Google Scholar 

  63. Griffiths, E.J. & Halestrap, A.P. Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J. Mol. Cell. Cardiol. 25, 1461–1469 (1993).

    Article  CAS  Google Scholar 

  64. Halestrap, A.P., Connern, C.P., Griffiths, E.J. & Kerr, P.M. Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol. Cell. Biochem. 174, 167–172 (1997).

    Article  CAS  Google Scholar 

  65. Reiss, K. et al. Insulin-like growth factor-1 receptor and its ligand regulate the reentry of adult ventricular myocytes into the cell cycle. Exp. Cell Res. 235, 198–209 (1997).

    Article  CAS  Google Scholar 

  66. Mehrhof, F.B. et al. In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation 104, 2088–2094 (2001).

    Article  CAS  Google Scholar 

  67. Vanden Hoek, T., Becker, L.B., Shao, Z.H., Li, C.Q. & Schumacker, P.T. Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion. Circ. Res. 86, 541–548 (2000).

    Article  CAS  Google Scholar 

  68. Akao, M., Ohler, A., O'Rourke, B. & Marban, E. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ. Res. 88, 1267–1275 (2001).

    Article  CAS  Google Scholar 

  69. Akao, M. et al. Differential actions of cardioprotective agents on the mitochondrial death pathway. Circ. Res. 92, 195–202 (2003).

    Article  CAS  Google Scholar 

  70. Reinecke, H. & Murry, C.E. Cell grafting for cardiac repair. Methods Mol. Biol. 219, 97–112 (2003).

    PubMed  Google Scholar 

  71. Murry, C.E. et al. Hematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).

    Article  CAS  Google Scholar 

  72. Minami, E., Laflamme, M.A., Saffitz, J.E. & Murry, C.E. Extracardiac progenitor cells repopulate most major cell types in the transplanted human heart. Circulation 112, 2951–2958 (2005).

    Article  Google Scholar 

  73. Nicklas, J.A. & Buel, E. Development of an Alu-based, real-time PCR method for quantitation of human DNA in forensic samples. J. Forensic Sci. 48, 936–944 (2003).

    CAS  PubMed  Google Scholar 

  74. Sambrook, J., Fritsch, E.F. & Maniatis, T. Appendix C: Properties of nucleic acids. in Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA, 1989).

    Google Scholar 

Download references

Acknowledgements

The authors thank Lil Pabon for helpful scientific discussions and Vasily Yarnykh and Eric Shankland for support of our magnetic resonance imaging studies. We are indebted to Kellii Schurb for assistance with animal surgery, to Mark Saiget for assistance with ALU qPCR and to Ron Hanson for managerial support of the project. We thank Jane Lebkowski for her ongoing support of this research collaboration. We thank K. Chien for myosin light chain 2V, rabbit polyclonal. This study was supported in part by a grant from Geron and in part by National Institutes of Health grants P01 HL03174, R01 HL061553, R01 HL084642, P20 GM069983 (to C.E.M.), R24 HL064387 (to C.E.M. and M.A.L.), T32 HL07828 (to M.A.L. and K.Y.C.), K08 HL080431 (to M.A.L.) and T32 EB001650 (to A.V.N.).

Author information

Authors and Affiliations

Authors

Contributions

M.A.L. and K.Y.C. were the principal experimentalists and contributed to the writing of the manuscript. A.V.N. performed the MRI scans and contributed to the writing. V.M. performed most of the histology and microscopy. J.A.F. cultured hES-derived cardiomyocytes and prepared cells for transplant. S.K.D. performed surgeries and in situ hybridization. H.R. performed the biodistribution studies. C.X., M.H., S.P., C.O., L.C. and J.G. generated hES-derived cardiomyocytes and prepared cells for transplant. Y.C. performed surgeries. E.M., E.A.G. and S.U. performed the echocardiography. J.G. designed experiments and contributed to the writing of the manuscript. C.Y. coordinated the MRI studies. C.E.M. designed experiments, coordinated the project and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Charles E Murry.

Ethics declarations

Competing interests

There is a sponsored research agreement between Geron Corporation (co-investigators on this study) and the Murry laboratory.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 1685 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laflamme, M., Chen, K., Naumova, A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25, 1015–1024 (2007). https://doi.org/10.1038/nbt1327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing