Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies

Abstract

Segmental isotopic labeling of proteins using protein ligation is a recently established in vitro method for incorporating isotopes into one domain or region of a protein to reduce the complexity of NMR spectra, thereby facilitating the NMR analysis of larger proteins1,2,3. Here we demonstrate that segmental isotopic labeling of proteins can be conveniently achieved in Escherichia coli using intein-based protein ligation. Our method is based on a dual expression system that allows sequential expression of two precursor fragments in media enriched with different isotopes. Using this in vivo approach, unlabeled protein tags can be incorporated into isotopically labeled target proteins to improve protein stability and solubility for study by solution NMR spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthetic preparation of segmentally isotope-labeled proteins using trans-protein splicing.
Figure 2: Structure of the two plasmids for in vivo segmental isotopic labeling.
Figure 3: SDS-PAGE analysis of in vivo protein ligation.
Figure 4: NMR spectra of the fully and segmentally isotope-labeled proteins.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Yamazaki, T. et al. Segmental isotope labeling for protein NMR using peptide splicing. J. Am. Chem. Soc. 120, 5591–5592 (1998).

    Article  CAS  Google Scholar 

  2. Xu, R., Ayers, B., Cowburn, D. & Muir, T.W. Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc. Natl. Acad. Sci. USA 96, 388–393 (1999).

    Article  CAS  Google Scholar 

  3. Otomo, T., Ito, N., Kyogoku, Y. & Yamazaki, T. NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 38, 16040–16044 (1999).

    Article  CAS  Google Scholar 

  4. McIntosh, L.P. & Dahlquist, F.W. Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q. Rev. Biophys. 23, 1–38 (1990).

    Article  CAS  Google Scholar 

  5. Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  Google Scholar 

  6. Yu, H. Extending the size limit of protein nuclear magnetic resonance. Proc. Natl. Acad. Sci. USA 96, 332–334 (1999).

    Article  CAS  Google Scholar 

  7. Wider, G. & Wüthrich, K. NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr. Opin. Struct. Biol. 9, 594–601 (1999).

    Article  CAS  Google Scholar 

  8. Otomo, T., Teruya, K., Uegaki, K., Yamazaki, T. & Kyogoku, Y. Improved segmental isotope labeling of proteins and application to a larger protein. J. Biomol. NMR 14, 105–114 (1999).

    Article  CAS  Google Scholar 

  9. Scott, C.P., Abel-Santos, E., Wall, M., Wahnon, D.C. & Benkovic, S.J. Production of cyclic peptides and proteins in vivo. Proc. Natl. Acad. Sci. USA 96, 13638–13643 (1999).

    Article  CAS  Google Scholar 

  10. Evans, T.C., Jr. et al. Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J. Biol. Chem. 275, 9091–9094 (2000).

    Article  CAS  Google Scholar 

  11. Iwai, H., Lingel, A. & Plückthun, A. Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J. Biol. Chem. 276, 16548–16554 (2001).

    Article  CAS  Google Scholar 

  12. Ozawa, T., Nogami, S., Sato, M., Ohya, Y. & Umezawa, Y. A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal. Chem. 72, 5151–5157 (2000).

    Article  CAS  Google Scholar 

  13. Giriat, I. & Muir, T.W. Protein semi-synthesis in living cells. J. Am. Chem. Soc. 125, 7180–7181 (2003).

    Article  CAS  Google Scholar 

  14. Makrides, S.C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60, 512–538 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu, H., Hu, Z.M. & Liu, X.Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. USA 95, 9226–9231 (1998).

    Article  CAS  Google Scholar 

  16. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  Google Scholar 

  17. King, C.Y. et al. Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl. Acad. Sci. USA 94, 6618–6622 (1997).

    Article  CAS  Google Scholar 

  18. King, C.Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004).

    Article  CAS  Google Scholar 

  19. Zhou, P., Lugovskoy, A.A. & Wagner, G. A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins. J. Biomol. NMR 20, 11–14 (2001).

    Article  Google Scholar 

  20. Orban, J., Alexander, P., Bryan, P. & Khare, D. Assessment of stability differences in the protein-G B1 and B2 domains from hydrogen-deuterium exchange - comparison with calorimetric data. Biochemistry 34, 15291–15300 (1995).

    Article  CAS  Google Scholar 

  21. Ikegami, T. et al. Solution structure of the chitin-binding domain of Bacillus circulans WL-12 chitinase A1. J. Biol. Chem. 275, 13654–13661 (2000).

    Article  CAS  Google Scholar 

  22. Boomershine, W.P., Raj, M.L., Gopalan, V. & Foster, M.P. Preparation of uniformly labeled NMR samples in Escherichia coli under the tight control of the araBAD promoter: expression of an archaeal homolog of the RNase P Rpp29 protein. Protein Expr. Purif. 28, 246–251 (2003).

    Article  CAS  Google Scholar 

  23. Christendat, D. et al. Structural proteomics of an archaeon. Nat. Struct. Biol. 7, 903–909 (2000).

    Article  CAS  Google Scholar 

  24. Serber, Z. & Dötsch, V. In-cell NMR spectroscopy. Biochemistry 40, 14317–14323 (2001).

    Article  CAS  Google Scholar 

  25. Mills, K.V. & Paulus, H. Reversible inhibition of protein splicing by zinc ion. J. Biol. Chem. 276, 10832–10838 (2001).

    Article  CAS  Google Scholar 

  26. Inoue, Y., Kishimoto, A., Hirao, J., Yoshida, M. & Taguchi, H. Strong growth polarity of yeast prion fiber revealed by single fiber imaging. J. Biol. Chem. 276, 35227–35230 (2001).

    Article  CAS  Google Scholar 

  27. Piotto, M., Saudek, V. & Sklenar, V. Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J. Biomol. NMR 2, 661–665 (1992).

    Article  CAS  Google Scholar 

  28. Wittekind, M. & Mueller, L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha-carbon and beta-carbon resonances in proteins. J. Magn. Reson. B 101, 201–205 (1993).

    Article  CAS  Google Scholar 

  29. Güntert, P., Dötsch, V., Wider, G. & Wüthrich, K. Processing of multidimensional NMR data with the new software PROSA. J. Biomol. NMR 2, 619–629 (1992).

    Article  Google Scholar 

  30. Bartels, C., Xia, T.H., Billeter, M., Güntert, P. & Wüthrich, K. The program XEASY for computer-supported NMR spectral-analysis of biological macromolecules. J. Biomol. NMR 6, 1–10 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Henry Paulus, Hideki Taguchi and Stephen F. Marino for providing the plasmids containing Ssp DnaE intein, Sup35NM and GB1, respectively. We also thank Pui Hang Tam, Jennifer Jin, Sarah Figley for their technical assistance and the Saskatchewan Structural Science Center for the use of NMR instruments. H.I. thanks Peter Güntert for his continuous support. This study is supported by the National Science and Engineering Research Council of Canada (298493-4) and the Biomolecular Structure Teaching and Research Program at the University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Iwai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Strips from the HNCACB spectrum of [13C, 15N]-GB1-CBD (PDF 260 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Züger, S., Iwai, H. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat Biotechnol 23, 736–740 (2005). https://doi.org/10.1038/nbt1097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing