Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intermolecular complementation achieves high-specificity tumor targeting by anthrax toxin

Abstract

Anthrax toxin protective antigen (PrAg) forms a heptamer in which the binding site for lethal factor (LF) spans two adjacent monomers1,2. This suggested that high cell-type specificity in tumor targeting could be obtained using monomers that generate functional LF-binding sites only through intermolecular complementation. We created PrAg mutants with mutations affecting different LF-binding subsites and containing either urokinase plasminogen activator (uPA) or matrix metalloproteinase (MMP) cleavage sites. Individually, these PrAg mutants had low toxicity as a result of impaired LF binding, but when administered together to uPA- and MMP-expressing tumor cells, they assembled into functional LF-binding heteroheptamers. The mixture of two complementing PrAg variants had greatly reduced toxicity in mice and was highly effective in the treatment of aggressive transplanted tumors of diverse origin. These results show that anthrax toxin, and by implication other multimeric toxins, offer excellent opportunities to introduce multiple-specificity determinants and thereby achieve high therapeutic indices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of intermolecular complementation by mutated PrAg proteins.
Figure 2: PrAg proteins with different LF-binding subsite mutations can complement LF binding and toxicity.
Figure 3: Efficient killing of human melanoma A2058 cells requires the intermolecular complementation of the two groups of PrAg proteins.
Figure 4: Potent intermolecular complementation-dependent tumoricidal activity of the engineered PrAg proteins.

Similar content being viewed by others

References

  1. Mogridge, J., Cunningham, K., Lacy, D.B., Mourez, M. & Collier, R.J. The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen. Proc. Natl. Acad. Sci. USA 99, 7045–7048 (2002).

    Article  CAS  Google Scholar 

  2. Cunningham, K., Lacy, D.B., Mogridge, J. & Collier, R.J. Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen. Proc. Natl. Acad. Sci. USA 99, 7049–7053 (2002).

    Article  CAS  Google Scholar 

  3. Liu, S., Schubert, R.L., Bugge, T.H. & Leppla, S.H. Anthrax toxin: structures, functions and tumour targeting. Expert Opin. Biol. Ther. 3, 843–853 (2003).

    Article  CAS  Google Scholar 

  4. Bradley, K.A., Mogridge, J., Mourez, M., Collier, R.J. & Young, J.A. Identification of the cellular receptor for anthrax toxin. Nature 414, 225–229 (2001).

    Article  CAS  Google Scholar 

  5. Scobie, H.M., Rainey, G.J., Bradley, K.A. & Young, J.A. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl. Acad. Sci. USA 100, 5170–5174 (2003).

    Article  CAS  Google Scholar 

  6. Klimpel, K.R., Molloy, S.S., Thomas, G. & Leppla, S.H. Anthrax toxin protective antigen is activated by a cell-surface protease with the sequence specificity and catalytic properties of furin. Proc. Natl. Acad. Sci. USA 89, 10277–10281 (1992).

    Article  CAS  Google Scholar 

  7. Petosa, C., Collier, R.J., Klimpel, K.R., Leppla, S.H. & Liddington, R.C. Crystal structure of the anthrax toxin protective antigen. Nature 385, 833–838 (1997).

    Article  CAS  Google Scholar 

  8. Leppla, S.H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA 79, 3162–3166 (1982).

    Article  CAS  Google Scholar 

  9. Duesbery, N.S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998).

    Article  CAS  Google Scholar 

  10. Liu, S., Netzel-Arnett, S., Birkedal-Hansen, H. & Leppla, S.H. Tumor cell-selective cytotoxicity of matrix metalloproteinase-activated anthrax toxin. Cancer Res. 60, 6061–6067 (2000).

    CAS  Google Scholar 

  11. Liu, S., Bugge, T.H. & Leppla, S.H. Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J. Biol. Chem. 276, 17976–17984 (2001).

    Article  CAS  Google Scholar 

  12. Liu, S., Aaronson, H., Mitola, D.J., Leppla, S.H. & Bugge, T.H. Potent antitumor activity of a urokinase-activated engineered anthrax toxin. Proc. Natl. Acad. Sci. USA 100, 657–662 (2003).

    Article  CAS  Google Scholar 

  13. Stetler-Stevenson, W.G., Aznavoorian, S. & Liotta, L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 9, 541–573 (1993).

    Article  CAS  Google Scholar 

  14. Dano, K. et al. Cancer invasion and tissue remodeling—cooperation of protease systems and cell types. APMIS 107, 120–127 (1999).

    Article  CAS  Google Scholar 

  15. Andreasen, P.A., Egelund, R. & Petersen, H.H. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell. Mol. Life Sci. 57, 25–40 (2000).

    Article  CAS  Google Scholar 

  16. Arora, N. & Leppla, S.H. Residues 1–254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J. Biol. Chem. 268, 3334–3341 (1993).

    CAS  PubMed  Google Scholar 

  17. Mogridge, J., Cunningham, K. & Collier, R.J. Stoichiometry of anthrax toxin complexes. Biochemistry 41, 1079–1082 (2002).

    Article  CAS  Google Scholar 

  18. Malatynska, E. et al. Schild regression analysis of antidepressant and bicuculline antagonist effects at the GABAA receptor. Pharmacology 57, 117–123 (1998).

    Article  CAS  Google Scholar 

  19. Varughese, M., Teixeira, A.V., Liu, S. & Leppla, S.H. Identification of a receptor-binding region within domain 4 of the protective antigen component of anthrax toxin. Infect. Immun. 67, 1860–1865 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Klimpel, K.R., Arora, N. & Leppla, S.H. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol. Microbiol. 13, 1093–1100 (1994).

    Article  CAS  Google Scholar 

  21. Puente, X.S., Sanchez, L.M., Overall, C.M. & Lopez-Otin, C. Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544–558 (2003).

    Article  CAS  Google Scholar 

  22. Dhanasekaran, S.M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    Article  CAS  Google Scholar 

  23. Ullmann, R. et al. Protein expression profiles in adenocarcinomas and squamous cell carcinomas of the lung generated using tissue microarrays. J. Pathol. 203, 798–807 (2004).

    Article  CAS  Google Scholar 

  24. Wasenius, V.M. et al. Hepatocyte growth factor receptor, matrix metalloproteinase-II, tissue inhibitor of metalloproteinase-I, and fibronectin are upregulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin. Cancer Res. 9, 68–75 (2003).

    CAS  PubMed  Google Scholar 

  25. Hoang, C.D. et al. Gene expression profiling identifies matriptase overexpression in malignant mesothelioma. Chest 125, 1843–1852 (2004).

    Article  CAS  Google Scholar 

  26. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  Google Scholar 

  27. Coombs, G.S. et al. Substrate specificity of prostate-specific antigen (PSA). Chem. Biol. 5, 475–488 (1998).

    Article  CAS  Google Scholar 

  28. Rosovitz, M.J. et al. Alanine scanning mutations in domain 4 of anthrax toxin protective antigen reveal residues important for binding to the cellular receptor and to a neutralizing monoclonal antibody. J Biol. Chem. 278, 30936–30944 (2003).

    Article  CAS  Google Scholar 

  29. Liu, S. & Leppla, S.H. Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization. J. Biol. Chem. 278, 5227–5234 (2003).

    Article  CAS  Google Scholar 

  30. Geran, R.I., Greenberg, N.H., MacDonald, M.M., Schumacher, A.M. & Abbot, B.J. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother. Rep. 3, 1–103 (1972).

    Google Scholar 

Download references

Acknowledgements

We thank Dana Hsu for assistance with toxin purification.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas H Bugge or Stephen H Leppla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Toxicity of the engineered PrAg proteins. (PDF 853 kb)

Supplementary Table. 1

Properties and maximum tolerated doses of PrAg proteins when injected intraperitoneally at days 0, 3, and 6. (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Redeye, V., Kuremsky, J. et al. Intermolecular complementation achieves high-specificity tumor targeting by anthrax toxin. Nat Biotechnol 23, 725–730 (2005). https://doi.org/10.1038/nbt1091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing