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            Abstract
Atherosclerosis, which underlies life-threatening cardiovascular disorders such as myocardial infarction and stroke1, is initiated by passage of low-density lipoprotein (LDL)Â cholesterol into the artery wall and its engulfment by macrophages, which leads to foam cell formation and lesion development2,3. It is unclear how circulating LDL enters the artery wall to instigate atherosclerosis. Here we show in mice that scavenger receptor class B type 1 (SR-B1) in endothelial cells mediates the delivery of LDL into arteries and its accumulation by artery wall macrophages, thereby promoting atherosclerosis. LDL particles are colocalized with SR-B1 in endothelial cell intracellular vesicles in vivo, and transcytosis of LDL across endothelial monolayers requires its direct binding to SR-B1 and an eight-amino-acid cytoplasmic domain of the receptor that recruits the guanine nucleotide exchange factor dedicator of cytokinesis 4 (DOCK4)4. DOCK4 promotes internalization of SR-B1 and transport of LDL by coupling the binding of LDL to SR-B1 with activation of RAC1. The expression of SR-B1 and DOCK4 is increased in atherosclerosis-prone regions of the mouse aorta before lesion formation, and in human atherosclerotic arteries when compared with normal arteries. These findings challenge the long-held concept that atherogenesis involves passive movement of LDL across a compromised endothelial barrier. Interventions that inhibit the endothelial delivery of LDL into artery walls may represent a new therapeutic category in the battle against cardiovascular disease.
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                    Fig. 1: Endothelial SR-B1 promotes atherosclerosis by driving delivery of LDL into the artery wall and uptake of LDL by artery wall macrophages.[image: ]


Fig. 2: Mediation of endothelial cell LDL uptake and transcytosis by SR-B1 requires binding of LDL to SR-B1 and an eight-amino-acid cytoplasmic domain.[image: ]


Fig. 3: SR-B1 interacts dynamically with DOCK4 in endothelial cells, and their expression is increased in atherosclerosis-prone regions of mouse aorta before lesion formation, and in human atherosclerotic versus normal arteries.[image: ]


Fig. 4: DOCK4 mediates uptake and transcytosis of LDL in endothelial cells by internalizing SR-B1 and coupling the receptor to RAC1.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Establishment of mice lacking endothelial SR-B1 or PDZK1.
a, j, Schematics of the gene-targeting strategies to generate floxed alleles of SR-B1 (a) and Pdzk1 (j) to create SR-B1fl/fl and Pdzk1fl/fl mice. Exon 2 of SR-B1 and exons 2 and 3 of Pdzk1were floxed. The recombined alleles following introduction of Cre recombinase are also shown. b, k, Using primers depicted in a and j, PCR-based genotyping was performed on aortas with or without intact endothelial cells (ECs). Aortas were obtained from floxed mice and mice with SR-B1 or PDZK1 deleted selectively from the endothelium (SR-B1âˆ†EC or PDZK1âˆ†EC). In genotyping to evaluate SR-B1 excision (b), additional samples were obtained from SR-B1fl/fl mice expressing Cre recombinase globally (gCre). In genotyping to evaluate Pdzk1 excision (k), lung samples were also studied. c, l, qRTâ€“PCR analysis of expression of SR-B1 (c) or Pdzk1 (l) in primary aortic endothelial cells (c, n = 7 and 3 for SR-B1fl/fl and SR-B1âˆ†EC, respectively; l, n = 6 per group) and bone marrow-derived myeloid lineage cellsÂ (c, n = 5 and 4 for SR-B1fl/fl and SR-B1âˆ†EC, respectively; l, nÂ = 5 per group)). dâ€“f, SR-B1 protein abundance (d, e, nÂ =Â 4) and Alk1 transcript levels (f, nÂ =Â 4) were evaluated in aortic endothelial cells from SR-B1fl/fl and SR-B1Î”EC mice; summary data for SR-B1 protein are in e. The uncropped versions of all immunoblots shown are provided in Supplementary Fig.Â 1.Â CNX, calnexin. g, m, Immunoblotting of SR-B1 (g) or PDZK1 (m) proteinÂ abundance in liver. h, n, Plasma cholesterol levels. For SR-B1 studies, nÂ =Â 4, 3, 9 and 10 mice for bars from left to right; for PDZK1 studies, nÂ =Â 4, 3, 6 and 6 mice. i, o, Representative lipoprotein profiles. Data are meanÂ Â±Â s.e.m.; in c, e, i, P values calculated by two-sided Studentâ€™s t-test; in h, n, P values calculated by ANOVA with Dunnettâ€™s post-hoc test.

                          Source data
                        


Extended Data Fig. 2 Atherosclerosis is promoted by endothelial SR-B1 but not by endothelial PDZK1, and neither endothelial SR-B1 nor PDZK1 affects circulating lipids.
Findings are shown for SR-B1 in mixed background females (aâ€“g) and C57BL/6 males (hâ€“n), and for PDZK1 in C57BL6 males (oâ€“u). a, h, o, Representative in situ aortic arch images of atherosclerotic plaque (yellow arrows); b, i, p, representative images for lipid-stained lesions in en face aortas; d, k, r, representative images for lipid and haematoxylin-stained aortic root sections (lesions outlined by yellow dashed line, magnification 40Ã—). c, j, q, Quantification of lesion areas in en face aortas (per cent total surface area); c, nÂ =Â 13 and 14 for SR-B1fl/fl and SR-B1âˆ†EC, respectively; j, nÂ =Â 10 and 9, respectively; q, nÂ =Â 14 per group. e, l, s, Quantification of lesion areas in in aortic root sections; e, nÂ =Â 9 per group; l, nÂ =Â 10 and 9 for SR-B1fl/fl and SR-B1âˆ†EC, respectively; s, nÂ =Â 10 and 11, respectively. f, m, t, Plasma total cholesterol (TC), triglyceride, and HDL cholesterol (HDL-c). f, nÂ =Â 12 per group for TC and TG, 10 per group for HDL-c; m, nÂ =Â 16 and 9 for SR-B1fl/fl and SR-B1âˆ†EC, respectively, for TC and TG, and nÂ =Â 10 and 9, respectively, for HDL-c; t, nÂ =Â 14 per group for TC and TG, and 10 per group for HDL-c. Findings for SR-B1fl/fl, SR-B1Î”EC and PDZK1Î”EC are shown in blue, red and orange, respectively. g, n, u, Representative lipoprotein profiles. Data are meanÂ Â±Â s.e.m; in c, e, j, l, P values calculated by two-sided Studentâ€™s t-test.

                          Source data
                        


Extended Data Fig. 3 Endothelial SR-B1 promotes atherosclerosis in LDLR null mice by driving LDL entry into the artery wall.
a, Representative in situ aortic arch images of atherosclerotic plaque (yellow arrows) in male Ldlrâˆ’/âˆ’SR-B1fl/fl and Ldlrâˆ’/âˆ’SR-B1âˆ†EC mice. b, Representative lipid-stained en face images of aortas. c, Lesion areas in en face aortas (per cent of total surface area); nÂ =Â 10 and 8 for Ldlrâˆ’/âˆ’SR-B1fl/fl and Ldlrâˆ’/âˆ’SR-B1âˆ†EC, respectively. d, Representative lipid and haematoxylin-stained aortic root sections (lesions outlined by yellow dashed line, magnification 40Ã—). e, Lesion areas in aortic root sections; nÂ =Â 10 and 8, respectively. fâ€“h, Plasma total cholesterol (f), triglyceride (g), and HDL cholesterol (h); nÂ =Â 10 and 8, respectively. i, Representative lipoprotein profiles. j, k, DiIâ€“nLDL uptake in the aorta. Human apolipoprotein B abundance (j) or DiI fluorescence intensity (k) was evaluated in aorta homogenates 4Â h after intravenous DiIâ€“nLDL injection. j, Left, representative immunoblot with three samples per group; j, k, nÂ =Â 5Â and 4 forÂ Ldlrâˆ’/âˆ’SR-B1fl/fl andÂ Ldlrâˆ’/âˆ’SR-B1âˆ†EC, respectively. l, m, Uptake of DiI-labelled mouse LDL (l) or mouse VLDL/IDL (m) in aorta from Ldlrâˆ’/âˆ’SR-B1fl/fl and Ldlrâˆ’/âˆ’SR-B1âˆ†EC mice (nÂ =Â 4 and 5, respectively). Data are meanÂ Â±Â s.e.m., P values calculated by two-sided Studentâ€™s t-test.

                          Source data
                        


Extended Data Fig. 4 Endothelial SR-B1 and hepatocyte SR-B1 have opposing effects on atherosclerosis.
Using AAV8-PCSK9, hypercholesterolaemia was induced in male SR-B1fl/fl mice, and in SR-B1âˆ†EC or SR-B1âˆ†HEP mice, which lack SR-B1 selectively in endothelial cells or hepatocytes, respectively. aâ€“l, Findings in SR-B1fl/fl versus SR-B1âˆ†EC mice; mâ€“v, findings in SR-B1fl/fl versus SR-B1âˆ†HEP mice. a, Representative in situ aortic arch images of atherosclerotic plaque (yellow arrows) in SR-B1fl/fl and SR-B1âˆ†EC mice. b, Representative lipid-stained en face images of aortas. c, Lesion areas in en face aortas (per cent of total surface area); nÂ =Â 12 and 10 for SR-B1fl/fl and SR-B1âˆ†EC mice, respectively. d, Representative lipid and haematoxylin-stained aortic root sections (lesions outlined by yellow dashed line, magnification 40Ã—). e, Lesion areas in aortic root sections; nÂ =Â 10 and 9, respectively. fâ€“h, Plasma total cholesterol (f), triglyceride (g), and HDL cholesterol (h), nÂ =Â 12 and 11, respectively. i, Representative lipoprotein profiles. j, k, Uptake of DiIâ€“nLDL in the aorta. Human apolipoprotein B abundance (j) or DiI fluorescence intensity (k) was evaluated in aorta homogenates 4 h after intravenous injection (nÂ =Â 6 and 5, respectively). j, Left, representative immunoblot with three samples per group. l, LDLR abundance in livers of control, SR-B1fl/fl and SR-B1âˆ†EC mice administered AAV-PCSK9. Immunoblot depicts protein abundance for two samples per group. m, Survival curves; nÂ =Â 5 and 4 for SR-B1fl/fl and SR-B1âˆ†HEP mice, respectively. n, Representative lipid-stained en face images of aortas. o, Lesion areas in en face aortas. Aortas and plasma were available from only two SR-B1âˆ†HEP mice. p, Longitudinal sections of SR-B1fl/fl and SR-B1âˆ†HEP hearts stained with haematoxylin and eosin (H&E) or trichrome (healthy myocardium, red/brown; fibrotic tissue, blue; yellow asterisks and arrows indicate areas of severe fibrosis). Images shown are representative of those obtained in all three hearts per group that underwent histological analysis. q, Coronary arteries of SR-B1fl/fl and SR-B1âˆ†HEP mice stained with H&E or trichrome, and coronary artery of SR-B1âˆ†HEP mouse stained with anti-CD68 to detect macrophages. râ€“t, Plasma total cholesterol, triglyceride, and HDL cholesterol. u, Representative lipoprotein profiles. v, Immunoblotting of SR-B1 abundance in liver, showing findings for two samples per group. Data are meanÂ Â±Â s.e.m; P values calculated by two-sided Studentâ€™s t-test.

                          Source data
                        


Extended Data Fig. 5 Endothelial SR-B1 does not influence vascular inflammation.
a, qRTâ€“PCR was used to compare Cd68 transcript levels in aortas from Apoeâˆ’/âˆ’SR-B1fl/fl and Apoeâˆ’/âˆ’SR-B1âˆ†EC male mice, nÂ =Â 8 per group. bâ€“i, mRNA abundance was also evaluated for the following genes, using Hprt1 as a housekeeping gene and normalizing expression to Cd68 levels: E-selectin (Sele; b), P-selectin (Selp; c), Vcam1 (d), Icam1 (e), Tgfb1 (f), Tnf (g), Il6 (h), and Il10 (i), with nÂ =Â 8 per group. j, Representative still images of leukocyteâ€“endothelial cell adhesion evaluated by intravital microscopy in the mesenteric microcirculation of Apoeâˆ’/âˆ’SR-B1fl/fl and Apoeâˆ’/âˆ’SR-B1âˆ†EC male mice administered vehicle (nÂ =Â 10 and 11, respectively) or TNF (nÂ =Â 5 and 6, respectively). k, Summary data for leukocyte velocity in four study groups in j. l, Gating strategy for evaluation of CD45+F4/80+ cell number and uptake of DiIâ€“LDL in the aorta. Following digestion of the aorta, all cells were first gated in FSC/SSC according to cell size and granularity. The resulting population was gated according to cell viability using DAPI. DAPI-negative live cells were gated for positivity for CD45, and CD45+ cells were then gated for positivity for F4/80 and the DiI label. Data are meanÂ Â±Â s.e.m.; in k, P values calculated by ANOVA with Dunnettâ€™s post-hoc test.

                          Source data
                        


Extended Data Fig. 6 Endothelial SR-B1 drives delivery of nLDL and oxLDL into the artery wall.
a, Three-dimensional depiction of localization of DiIâ€“oxLDL determined by confocal fluorescence microscopy of the luminal surface of the ascending aorta of Apoeâˆ’/âˆ’SR-B1fl/fl and Apoeâˆ’/âˆ’SR-B1âˆ†EC mice. Red, DiI; blue, Hoechst staining of nuclei. b, Representative cumulative images of the xâ€“y plane parallel to the luminal surface. c, Summation of DiIâ€“oxLDL signal in the superficial ascending aorta. Two areas encompassing at least 100 cells each were counted per mouse in three mice per group for a totalÂ of nÂ =Â 6 areas per genotype group. d, e, Uptake of DiIâ€“oxLDL in the aorta. Human apolipoprotein B abundance (d) and DiI fluorescence intensity (e) were evaluated in aorta homogenates 4Â h after intravenous DiIâ€“oxLDL injection; nÂ =Â 8 mice per group. f, g, Using the same approaches as in d, e, uptake of DiIâ€“oxLDL in the aorta was evaluated in Apoeâˆ’/âˆ’ mice treated with control or SR-B1-blocking antibodies given intraperitoneally before intravenous injection of DiIâ€“oxLDL (nÂ =Â 6 and 7 for control and anti-SR-B1Â antibodies, respectively). h, Quantification of CD45+F4/80+ macrophages in the aorta (nÂ =Â 6 aortas per group). Results are expressed relative to abundance in Apoeâˆ’/âˆ’SR-B1fl/fl control mice. i, Distribution of DiIâ€“oxLDL in CD45+F4/80+ macrophages in the aorta; nÂ =Â 6 mice per group. j, k, Uptake of DiIâ€“nLDL in the aorta. Human apolipoprotein B abundance (j) or DiI fluorescence intensity (k) was evaluated in aorta homogenates 4 h after intravenous DiIâ€“nLDL injection; nÂ =Â 7 and 8 for Apoeâˆ’/âˆ’SR-B1fl/fl and Apoeâˆ’/âˆ’SR-B1âˆ†EC mice, respectively. l, m, Using the same approaches as inÂ j, k, uptake of DiIâ€“nLDL in the aorta was evaluated in Apoeâˆ’/âˆ’ mice treated with control or SR-B1 blocking antibodies given intraperitoneally before intravenous injection of DiIâ€“nLDL (nÂ =Â 5 mice per group). Left panels in d, f, j, l show representative immunoblots with three samples per group; data are meanÂ Â±Â s.e.m.; P values calculated by two-sided Studentâ€™s t-test. See also Supplementary VideosÂ 1, 2.
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Extended Data Fig. 7 Low-power electron micrograph images of gold-labelled LDL and immunogold-labelled SR-B1 in aortic endothelial cells in vivo.
Following intravascular administration in wild-type mice, gold-labelled LDL particles and SR-B1 were localized in aortic endothelial cells by electron microscopy. The panels show images for different endothelial cells, each bordered by the lumen and elastic lamina. Shown are the locations of the high-power fields provided in Fig.Â 1n, withÂ gold-labelled LDL (large particles) highlighted by yellow arrows and immunogold-labelled SR-B1 (small particles) highlighted by red arrows.


Extended Data Fig. 8 SR-B1 governs LDL transcytosis in endothelial cells independent of effects on caveolae function.
a, Uptake of DiIâ€“nLDL and DiIâ€“oxLDL in endothelial cells after RNAi knockdown of SR-B1 or Pdzk1. Left, red, DiIâ€“oxLDL; blue, DAPI-stained nuclei. nÂ =Â 6 per group. b, c, Uptake (b) and transcytosis (c) of DiIâ€“nLDL and DiIâ€“oxLDL in cells treated with control IgG, SR-B1 blocking antibody or BLT1. nÂ =Â 6 per group. d, Transcytosis of DiIâ€“nLDL and DiIâ€“oxLDL in endothelial cells after RNAi knockdown of SR-B1. nÂ =Â 3 per group. e, f, Activation of NOS activation by VEGF (100Â ngÂ mlâ€“1) or HDL (20Â Î¼gÂ mlâ€“1) with or without RNAi knockdown of SR-B1 (e, nÂ =Â 10 per group) or disruption of caveolae by methyl-Î²-cyclodextrin (CD)Â treatment (f, 10Â mM for 60Â min, nÂ =Â 8 per group). g, Abundance of target protein following RNAi knockdown of SR-B1, Pdzk1, Ldlr or Cd36 in HAECs. Findings for three samples per condition are shown. In all studies, expression of SR-B1, LDLR and CD36 was evaluated. h, i, Uptake of DiIâ€“nLDL and DiIâ€“oxLDL in cells depleted of LDLR by RNAi (h, nÂ =Â 12 for nLDL and 13 for oxLDL) or treated with control versus LDLR blocking antibody (i, nÂ =Â 6 per group). j, Transcytosis of DiIâ€“nLDL and DiIâ€“oxLDL in cells treated with control versus LDLR blocking antibody. nÂ =Â 6 for nLDL and 3 for oxLDL. k, l, Uptake of DiIâ€“nLDL and DiIâ€“oxLDL in cells depleted of CD36 by RNAi (k, nÂ =Â 6 per group) or treated with control versus CD36 blocking antibody (l, nÂ =Â 9 and 12 for nLDL, respectively, and nÂ =Â 6 for oxLDL). m, Transcytosis of DiIâ€“nLDL and DiIâ€“oxLDL in cells treated with control versus CD36 blocking antibody. nÂ =Â 6 per group. Data are meanÂ Â±Â s.e.m.; P values calculated by ANOVA with Dunnettâ€™s post-hoc test (aâ€“c) and two-sided Studentâ€™s t-test (dâ€“f, h, i, k, l).

                          Source data
                        


Extended Data Fig. 9 Roles of SR-B1, ALK1 and DOCK4 in transcytosis of LDL by endothelial cells.
a, Abundance of SR-B1, LDLR, and CD36 protein following RNAi knockdown of SR-B1, or following reconstitution of wild-type SR-B1 expression in cells depleted of the endogenous receptor. Expression of caveolin-1 (Cav1) was also evaluated. Findings for two samples per condition are shown. b, Alk1 transcript levels in cells manipulated as in a. nÂ =Â 3, 4 and 4, respectively. c, Abundance of SR-B1, LDLR, and CD36 protein following RNAi knockdown of Alk1, SR-B1, or both. Findings for two samples per condition are shown. d, Alk1 transcript levels in cells manipulated as in c. nÂ =Â 4 per group. e, Phosphorylation of SMAD1/5 in response to BMP9 (10Â ngÂ mlâ€“1 for 0â€“120Â min) after RNAi knockdown of SR-B1 or Alk1. The abundance of Ser463/465 phosphorylation of SMAD1/5 (p-SMAD1/5)Â and total SMAD1Â (t-SMAD1) were evaluated by immunoblotting. f, Transcytosis of DiIâ€“nLDL following RNAi knockdown of Alk1, SR-B1, or both. nÂ =Â 9 per group. g, h, Uptake of nLDL was evaluated using 125I-nLDL in the absence or presence of a 50-fold excess of unlabelled nLDL (g), and following RNAi knockdown of SR-B1 or Dock4, or reconstitution of wild-type SR-B1 expression in cells depleted of the endogenous receptor (h). nÂ =Â 8 per group. i, j, Transcytosis of nLDL was evaluated using 125I-nLDL in the absence or presence of a 50-fold excess of unlabelled nLDL (i), and following manipulation of SR-B1 or DOCK4 expression as in h (j). nÂ =Â 3 per group. k, l, Transcytosis of nLDL was evaluated using TIRF microscopy in cells treated with Dyngo4A (k, 30Â Î¼M) or following RNAi knockdown of SR-B1 or Dock4 (l). nÂ =Â 6 per group. m, Activation of RAC1 in response to oxLDL in cells expressing GFP control versus dominant-negative RAC1, and in untreated cells versus cells incubated with the RAC1 inhibitor NSC23766. Data are meanÂ Â±Â s.e.m.; P values calculated by ANOVA with Dunnettâ€™s post-hoc test (d, f, h, j, l) or two-sided Studentâ€™s t-test (g, i, k).

                          Source data
                        


Extended Data Fig. 10 Lentiviral reconstitution of wild-type and mutant SR-B1 expression in human endothelial cells.
aâ€“c, Studies of reconstituted wild-type SR-B1, extracellular point mutants of SR-B1, or SR-B1(Q445A). The extracellular point mutants were: SR-B1(M159E), SR-B1(T165E), SR-B1(F171A), SR-B1(T175A), and SR-B1(E178A). Whole cell lysate abundance (a), cell surface abundance (b; except for Q445A, which was previously evaluated), and nLDL and oxLDL binding (c) were evaluated. dâ€“f, Studies of reconstituted wild-type SR-B1 or C-terminal cytoplasmic tail deletion mutants of SR-B1. The mutants were: SR-B1(âˆ†C15) (âˆ†495â€“509), SR-B1(âˆ†C23) (âˆ†487â€“509) and SR-B1(âˆ†C30) (âˆ†480â€“509). Whole cell lysate abundance (d), cell surface abundance (e), and nLDL and oxLDL binding (f) were evaluated. g, Top, sequence alignment of amino acids in the C-terminal cytoplasmic tail of SR-B1 homologues (residues 487â€“494) from human (Homo sapiens, Hs, Q8WTVO, Swiss-Prot), mouse (Mus musculus, Mm, Q61009, Swiss-Prot), rat (Rattus norvegicus, Rr, P97943, Swiss-Prot), bovine (Bos taurus, Bt, O18824, Swiss-Prot), pig (Sus scrofa, Ss, Q8SQC1, Swiss-Prot), and Chinese hamster (Cricetulus griseus, Cg, Q60417, Swiss-Prot). Fully conserved residues are shown in bold. Bottom, comparison of human SR-B1 residues 487â€“494 and entire human CD36 C-terminal cytoplasmic tail. Residues of SR-B1 not shared with CD36 are shown in bold. hâ€“j, Studies of reconstituted wild-type or C-terminal cytoplasmic tail substitution mutants of SR-B1. The mutants were: SR-B1(IQAY), SR-B1(SESL), SR-B1(Y490A), SR-B1(Q488A), SR-B1(S491A), SR-B1(E492A), SR-B1(S493A), and SR-B1(L494A). Whole cell lysate abundance (h), cell surface abundance (i), and nLDL and oxLDL binding (j) were evaluated. kâ€“m, Binding (k), uptake (l) and transcytosis (m) of nLDL were evaluated with the various mutants shown at an nLDL concentration of 100Â Î¼gÂ mlâ€“1. n, Whole cell lysate abundance of CD36 and LDLR following reconstitution with the SR-B1 mutants tested in kâ€“m. Data are meanÂ Â±Â s.e.m. For cell surface abundance by flow cytometry, nÂ =Â 3 or 4. For LDL binding, nÂ =Â 4 or 8. For LDL transcytosis, nÂ =Â 3. In c, kâ€“m, P values for comparison with wild-type calculated by two-sided Studentâ€™s t-test.
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Reporting Summary

Video 1
Three-dimensional imaging of LDL uptake in the ascending aorta in mice with versus without SR-B1 in endothelium, related to Figure 2. Male Apoeâˆ’/âˆ’SR-B1fl/fl mice previously placed on an atherogenic diet for one week received an IV injection of DiIâ€“oxLDL, and 4 hours later the aortas were perfused, isolated and immediately subjected to Hoechst staining and confocal fluorescence microscopy on a randomlyÂ selected region on the luminal surface of the ascending aorta to a depth of 50um. DiI is shown in red and Hoechst staining of nuclei is shown in blue. At the start of the representative videos shown, the lumen is on the left side.


Video 2
Three-dimensional imaging of LDL uptake in the ascending aorta in mice with versus without SR-B1 in endothelium, related to Figure 2. Male Apoeâˆ’/âˆ’SR-B1âˆ†EC mice previously placed on an atherogenic diet for one week received an IV injection of DiIâ€“oxLDL, and 4 hours later the aortas were perfused, isolated and immediately subjected to Hoechst staining and confocal fluorescence microscopy on a randomlyÂ selected region on the luminal surface of the ascending aorta to a depth of 50Â Î¼m. DiI is shown in red and Hoechst staining of nuclei is shown in blue. At the start of the representative videos shown, the lumen is on the left side.
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