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            Abstract
The carboxy-terminal domain (CTD) of the RNA polymerase II (RNAP II) subunit POLR2A is a platform for modifications specifying the recruitment of factors that regulate transcription, mRNA processing, and chromatin remodelling. Here we show that a CTD arginine residue (R1810 in human) that is conserved across vertebrates is symmetrically dimethylated (me2s). This R1810me2s modification requires protein arginine methyltransferase 5 (PRMT5) and recruits the Tudor domain of the survival of motor neuron (SMN, also known as GEMIN1) protein, which is mutated in spinal muscular atrophy. SMN interacts with senataxin, which is sometimes mutated in ataxia oculomotor apraxia type 2 and amyotrophic lateral sclerosis. Because POLR2A R1810me2s and SMN, like senataxin, are required for resolving RNAâ€“DNA hybrids created by RNA polymerase II that form R-loops in transcription termination regions, we propose that R1810me2s, SMN, and senataxin are components of an R-loop resolution pathway. Defects in this pathway can influence transcription termination and may contribute to neurodegenerative disorders.
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                    Figure 1: Symmetric dimethylation of R1810 on the RNAP II CTD and a requirement for PRMT5.


Figure 2: R1810me2s in the RNAP II CTD is recognized by SMN.


Figure 3: R1810me2s and SMN recruit senataxin to RNAP II.


Figure 4: SMN and R1810me2s regulate transcription termination by RNAP II.


Figure 5: SMN and R1810me2s are important for resolving R-loops created by elongating RNAP II and preventing DNA damage.
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Extended data figures and tables

Extended Data Figure 1 The R1810me2s and R1810me2a modifications on POLR2A depend on PRMT5 and CARM1, respectively.
a, POLR2A carries Rme2a and Rme2s modifications. Whole-cell lysates (WCL) from HEK293 cells stably expressing Flag-tagged TDRD3 or the POLR2D subunit of RNAP II were used for immunoprecipitation using beads conjugated with M2 anti-Flag antibody, and the precipitates were western blotted with the indicated antibodies. Cells expressing Flagâ€“GFP were used as a negative control. Precipitated TDRD3 and POLR2D contained POLR2A with the Arg-me2a modification (ASYMM24 antibody), whereas precipitated POLR2D, and not TDRD3, contained POLR2A with the Arg-me2s modification (SYMM10 and Y12 antibodies). b, Whole-cell lysate western blot controls for Figure 1b. c, Y12 and R1810me2s recognition of RNAP II CTD R1810me2s is blocked by surrounding phosphorylated residues. The detection of R1810me2s improves for both antibodies when the precipitated samples are treated with alkaline phosphatase. d, Slot blots illustrating that the Y12 and R1810me2s antibodies specifically recognize peptides containing RNAP II R1810me2s. The indicated amounts of biotin-labelled 7mer CTD peptides bracketing R1810 with no modification, Arg-me2a, and Arg-me2s were blotted before incubating with the R1810me2s or Y12 antibodies. e, Western blot confirming efficient PRMT5 knockdown, and RTâ€“qPCR assay confirming efficient CARM1 knockdown for experiment of Fig. 1c. f, g, Whole-cell lysate western blot controls for Fig. 1c,d, respectively. hâ€“j, Whole cell lysate western blot controls for Fig. 3câ€“e, respectively.


Extended Data Figure 2 Recognition of R1810me2s by SMN.
aâ€“c, In vitro fluorescence polarization (FP) peptide binding assays. a, Recombinant SMN Tudor domain was incubated with FITC-labelled 13-mer CTD peptides bracketing either R1810 or R1603. SMN preferentially bound CTD peptides in the order R1810me2s > R1603me2s ~ R1810me2a > R1603me2a, and exhibited no detectable affinity for the unmodified peptides. b, Recombinant SMN Tudor domain was incubated with FITC-labelled CTD peptides bracketing R1810me2s also containing Y1P, S2P or both upstream of R1810me2s, showing slightly preferential binding to the peptides when the phospho-modification(s) are present. c, FITC-CTD R1810me2s or FITC-CTD R1810me2a is not recognized by other recombinant Tudor domains from SMNDC1 (also known as SPF30), TDRD1, TDRD2, TDRD9 or TDRD11 (also known as SND1). d, Isothermal titration calorimetry assays showing that the recombinant SMN Tudor domain has no enhanced binding to R1810me2s containing peptides also carrying S2P or both Y1P and S2P.


Extended Data Figure 3 Interaction of SMN and senataxin with RNAP II depends on PRMT5.
a, PRMT5 overexpression increases the R1810me2s modification and the SMN and senataxin associations with RNAP II. Left, western blots with the indicated antibodies of HEK293 whole-cell lysates overexpressing Flag-tagged PRMT5 or GFP. Overexpressing PRMT5 does not increase the amount of SMN or senataxin. Right, endogenous POLR2A was immunoprecipitated (N20 antibody) from HEK293 cell lysates with overexpressed Flag-tagged PRMT5 or GFP. b, SMN associates with phospho-isoforms of RNAP II. Immunoprecipitation with SMN antibody, but not control IgG, co-precipitated RNAP II with unmodified CTD repeats (8WG16 antibody) and CTD repeats phosphorylated on Ser5 and Ser2 as detected by western blotting. c, Requirement of PRMT5 for association of SMN and senataxin with RNAP II. Left, western blots with the indicated antibodies of HEK293 whole-cell lysates expressing siRNAs for PRMT5 or SMN. Right, endogenous POLR2A was immunoprecipitated (N20 antibody) from cells with transient siRNA-mediated knockdown of PRMT5 or SMN. Western blots were performed with the indicated antibodies. PRMT5 knockdown causes loss of R1810me2s on POLR2A, as well as reduced association of SMN and senataxin with RNAP II. SMN knockdown causes reduced association of senataxin with RNAP II. d, SMN ChIP-seq (with GFP antibody against inducible GFPâ€“SMN, or with SMN-specific antibody in HEK293 cells). Both methods observe enriched SMN signals at promoter and termination regions; the average of both is shown.


Extended Data Figure 4 Association of SMN and senataxin with GAPDH depends on R1810 and PRMT5.
a, Chromatin immunoprecipitation (ChIP) was used to determine the distribution of SMN along the human GAPDH gene in HEK293 cells, expressed as percent input or as a ratio of SMN to RNAP II. Error bars represent technical variation in a single experiment (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰3). b, SMN ChIP was performed in HEK293 cells stably expressing shRNAs for PRMT5 or GFP (as a control). With the control normalized to 1, knockdown of PRMT5 caused strong reductions of the SMN ChIP signals all along GAPDH. Error bars represent biological replicates (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰3). c, SMN ChIP signals on GAPDH decrease in Raji cells expressing HA-tagged R1810A mutant POLR2A after 3 days of treatment with Î±-amanitin to eliminate endogenous POLR2A. ChIP results with wild-type HA-tagged POLR2A were normalized to 1. Error bars represent biological replicates (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰3). d, ChIP in HEK293 cells showing the distribution of senataxin along the human GAPDH gene, expressed as percent input or as a ratio to RNAP II. Error bars represent technical variation in a single experiment (mean Â± s.e.m., nâ€‰=â€‰3). e, Senataxin ChIP signals on GAPDH decrease in the POLR2A (R1810A) mutant after 3 days of treatment of Raji cells with Î±-amanitin to eliminate endogenous POLR2A. Results are normalized to wild-type POLR2A and expressed as the ratio of senataxin to RNAP II. Error bars represent biological replicates (mean Â± s.e.m., nâ€‰=â€‰3). f, Knockdown of PRMT5 or SMN causes reductions of the senataxin ChIP signals all along GAPDH. ChIP against senataxin was performed in HEK293 cells with shRNA-mediated knock-down of PRMT5 or SMN. Results were normalized to a control knockdown of GFP and expressed as the ratio of senataxin to RNAP II. Error bars represent biological replicates (mean Â± s.e.m., nâ€‰=â€‰2).


Extended Data Figure 5 The R1810 mutation causes RNAP II to accumulate in the termination region of ACTB.
Chromatin immunoprecipitation (ChIP) with three different POLR2A antibodies (8WG16, H224, 4H8), as indicated, was performed on the ACTB gene in Raji cells expressing HA-tagged wild-type or mutant (R1810A) POLR2A, 3 days after treatment with Î±-amanitin to eliminate endogenous POLR2A. Shown are single experiments with error bars representing technical variation (mean Â± s.e.m., nâ€‰=â€‰3).


Extended Data Figure 6 R1810, PRMT5, and SMN regulate transcription termination on GAPDH.
a, Chromatin immunoprecipitation (ChIP) with the N20, 4H8, and 8WG16 antibodies to show the distribution of wild-type POLR2A along the human GAPDH gene. Error bars represent technical variation (mean Â± s.e.m., nâ€‰=â€‰3). b, POLR2A ChIP along the GAPDH gene was performed in HEK293 cells after stable knockdown of PRMT5 or SMN, using stable knockdown of GFP as a negative control. RNAP II over-accumulates at the termination sites on GAPDH after knockdown of PRMT5 or SMN. Error bars represent biological replicates (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰5). c, POLR2A ChIP on the GAPDH gene was performed in Raji cells that express HA-tagged wild-type or mutant (R1810A) POLR2A 3 days after Î±-amanitin treatment to eliminate endogenous POLR2A. R1810A mutant RNAP II over-accumulates downstream of the cleavage and polyadenylation sites where RNAP II pauses and terminates transcription on GAPDH. Error bars represent biological replicates (mean Â± s.e.m., nâ€‰=â€‰4). d, Data from b, c are displayed as normalized ratios to the control (GFP knockdown, or HA wild-type POLR2A), with the ratio for the intron 5 qPCR primers at 2436 set as 1. e, Nuclear run-on experiment in which nuclei from Raji cells expressing wild-type or mutant (R1810A) POLR2A 3 days after Î±-amanitin treatment to eliminate endogenous POLR2A were incubated with BrUTP for 30 min, and short run-on RNAs were isolated by binding to anti-BrU antibodies. The R1810A mutation led to over-accumulation of active RNAP II in the region downstream of the poly(A) site on GAPDH. Error bars represent technical variation (mean Â± s.e.m., nâ€‰=â€‰3).


Extended Data Figure 7 PRMT5 and SMN but not CARM1 regulate transcription termination by RNAP II on ACTB and GAPDH.
a, Chromatin immunoprecipitation (ChIP) for POLR2A with 4H8 antibody was performed after stable shRNA-mediated PRMT5, CARM1 or SMN knockdown in HEK293 cells to show that only PRMT5 and SMN knockdowns lead to the over-accumulation of RNAP II in the termination regions of ACTB. The graph shows a single experiment with error bars representing technical variation (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰3). b, POLR2A ChIP with the 8WG16 antibody was performed after transient siRNA-mediated knockdown of PRMT5 or SMN in HEK293 cells to show that PRMT5 or SMN knockdown leads to the over-accumulation of RNAP II in the termination region of Î²-actin. The graph shows a single experiment with error bars representing technical variation (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰3). c, ChIP for POLR2A with 4H8 antibody was performed after stable shRNA-mediated knockdown of PRMT5, SMN or GFP (as a control) in HEK293 cells to show that knockdown of PRMT5 or SMN leads to the over-accumulation of RNAP II in the termination region of GAPDH. The graph shows a single experiment with error bars representing technical variation (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰3). d, POLR2A ChIP with 8WG16 antibody was performed after transient siRNA-mediated knockdown of PRMT5 or SMN in HEK293 cells to show that knockdown of PRMT5 or SMN leads to the over-accumulation of RNAP II in the termination region of GAPDH. The graph shows a single experiment with error bars representing technical variation (mean Â± s.e.m., nâ€‰=â€‰3).


Extended Data Figure 8 RNAP II pausing defect and R-loop accumulation are observed in CRISPR SMN knockout cells and in SMA disease cells.
a, ChIP for POLR2A with N20 antibody was performed after stable SMN knockout (CRISPR) in HEK293 cells shows that RNAP II accumulates in the termination regions of ACTB. Scrambled guide RNA treatment was used as a negative control. Error bars represent biological variation (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰3). b, Accumulation of R-loops in the termination regions of the ACTB gene after SMN knockout. A fusion protein of GFPâ€“RNase H DNAâ€“RNA hybrid binding domain was stably expressed in HEK293 cells. ChIP with GFP antibody (Abcam 290) was used for the detection of the R-loops (DNAâ€“RNA hybrids), using the indicated primer positions for qPCR along the gene. Scrambled guide RNA treatment was used as a negative control. Error bars represent biological variation (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰3). c, Top: live cell microscopy images showing that HEK293 cells with SMN knockout appear to be physiologically normal in comparison to the control scrambled KO. Bottom: western blot with anti-SMN antibody showing that SMN expression is knocked out by CRISPR. d, Human cell lines (3 fibroblast, 3 B lymphocyte) were obtained from the Coriell Institute for Medical Research. These include cells from two children with SMA disease and their normal parents. e, ChIP for POLR2A (N20, 8WG16 antibodies) was performed on the ACTB gene using the averaged value of the parents as control. POLR2A in the SMA disease cells (from both fibroblast and B cell lines) accumulates in the termination regions of the ACTB gene. Error bars represent biological variation (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰4). f, Top: quantification of R-loops by DNA immunoprecipitation (DIP) with the S9.6 antibody in the patient cells, showing that the R-loops are sensitive to RNase H. Error bars represent technical variation (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰3). Bottom: R-loop DIP with the S9.6 antibody shows that R-loops accumulate in the termination regions of the ACTB gene in the SMA disease cells. The averaged value of the parents was used as a control. Error bars represent biological variation (meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰5).


Extended Data Figure 9 SMN and POLR2A(R1810) effects on transcription termination by RNAP II occur on a genome-wide level.
a, Western blot using N20 antibody for POLR2A and SMN antibody to verify shSMN knockdown of SMN for the ChIP-seq experiment of Fig. 4e; shGFP was used as a control. b, Western blot using N20 and HA antibodies to verify equal expression of HA-tagged wild-type and POLR2A(R1810A) and the effect of Î±-amanitin treatment on cells without an HA-tagged construct for the ChIP-seq experiment of Fig. 4e. c, RNAP II ChIP-seq results for several housekeeping genes are displayed in detail (B2M, CD40, ATF4 (a short gene), JUND (an intronless gene), and TUBA1B) using the Integrative Genomics Viewer. The promoter peaks are displayed to the left, and the regions underlined in red are RNAP II termination regions. IgG ChIPseq was used as negative control. Approximately 10 million unique RNAP II ChIPseq reads (4H8, 8WG16) were obtained from GFP or SMN stable knockdown Raji cells. Approximately 10â€“12 million unique RNAP II ChIP-seq reads (N20) were obtained from wild-type or R1810A POLR2A Raji cells upon 3 days of amanitin treatment (2â€‰Î¼g mlâˆ’1).


Extended Data Figure 10 Model of the pathway that regulates R-loop accumulation to prevent DNA damage.
a, b, Quantification of Î³H2AX:H2AX ratio through ChIP in HEK293 (a) or Raji (b) cells, along the ACTB gene, after knocking down PRMT5, or SMN, with GFP knockdown as a negative control (a), or mutating R1810 to alanine (b). Error bars denote s.e.m. (nâ€‰=â€‰4). c, Pathway (boxed) and model showing influence of PRMT5, R1810me2s, and SMN on R-loop resolution and transcription termination.





Supplementary information
Supplementary Information
This file contains Supplementary Table 1 which shows the number of times each type of experiment described in this work was performed with the reported results) and raw western blots used in the paper. (PDF 1998 kb)





PowerPoint slides
PowerPoint slide for Fig. 1

PowerPoint slide for Fig. 2

PowerPoint slide for Fig. 3

PowerPoint slide for Fig. 4

PowerPoint slide for Fig. 5




Rights and permissions
Reprints and permissions


About this article
       



Cite this article
Yanling Zhao, D., Gish, G., Braunschweig, U. et al. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination.
                    Nature 529, 48â€“53 (2016). https://doi.org/10.1038/nature16469
Download citation
	Received: 06 January 2014

	Accepted: 20 November 2015

	Published: 23 December 2015

	Issue Date: 07 January 2016

	DOI: https://doi.org/10.1038/nature16469


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        








            


            
        
            
                This article is cited by

                
                    	
                            
                                
                                    
                                        Analysis of asymptomatic Drosophila models for ALS and SMA reveals convergent impact on functional protein complexes linked to neuro-muscular degeneration
                                    
                                

                            
                                
                                    	Marina L. Garcia-Vaquero
	Marjorie Heim
	Margarida Gama-Carvalho


                                
                                BMC Genomics (2023)

                            
	
                            
                                
                                    
                                        Nucleolar reorganization after cellular stress is orchestrated by SMN shuttling between nuclear compartments
                                    
                                

                            
                                
                                    	Shaqraa Musawi
	Lise-Marie Donnio
	Giuseppina Giglia-Mari


                                
                                Nature Communications (2023)

                            
	
                            
                                
                                    
                                        Critical Roles of Protein Arginine Methylation in the Central Nervous System
                                    
                                

                            
                                
                                    	Kewei Chang
	Dan Gao
	Shemin Lu


                                
                                Molecular Neurobiology (2023)

                            
	
                            
                                
                                    
                                        A small molecule antagonist of SMN disrupts the interaction between SMN and RNAP II
                                    
                                

                            
                                
                                    	Yanli Liu
	Aman Iqbal
	Jinrong Min


                                
                                Nature Communications (2022)

                            
	
                            
                                
                                    
                                        The phospho-landscape of the survival of motoneuron protein (SMN) protein: relevance for spinal muscular atrophy (SMA)
                                    
                                

                            
                                
                                    	Nora Tula Detering
	Tobias SchÃ¼ning
	Peter Claus


                                
                                Cellular and Molecular Life Sciences (2022)

                            


                

            

        
    

            
                Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.



                
                    
                    

                

            
        





    
        

        
            
                

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



            

            
                

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



            

        
    


    
        Editorial Summary
Control of transcription termination
The repeating sequence of the C-terminal domain of RNA polymerase II is a favoured target of many modification enzymes. In this study, Jack Greenblatt and colleagues identify and characterize a symmetrical dimethylation modification of an arginine residue, R1810, in the the C-terminal domain. The R1810me2s modification is made by PRMT5, which interacts with SMN (survival of motor neuron) protein, and indirectly with senataxin proteins; mutations in each of these proteins are found in neurodegenerative diseases. The authors propose that the R1810me2s modification of RNA Pol II, together with the activity of SMN and senataxin, is part of a pathway for resolution of transcription-associated R-loops that, if absent, affects gene expression by disrupting transcription termination.
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