Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An archaeal origin of eukaryotes supports only two primary domains of life

Subjects

Abstract

The discovery of the Archaea and the proposal of the three-domains ‘universal’ tree, based on ribosomal RNA and core genes mainly involved in protein translation, catalysed new ideas for cellular evolution and eukaryotic origins. However, accumulating evidence suggests that the three-domains tree may be incorrect: evolutionary trees made using newer methods place eukaryotic core genes within the Archaea, supporting hypotheses in which an archaeon participated in eukaryotic origins by founding the host lineage for the mitochondrial endosymbiont. These results provide support for only two primary domains of life—Archaea and Bacteria—because eukaryotes arose through partnership between them.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Competing hypotheses for the origin of the eukaryotic host cell.
Figure 2: Archaeal links in the origin of eukaryotes.

References

  1. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977)A landmark paper that, together with ref. 4, reported the discovery of the Archaea and discussed its far-reaching implications for early evolution.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006)

    ADS  CAS  PubMed  Google Scholar 

  3. Woese, C. R. On the evolution of cells. Proc. Natl Acad. Sci. USA 99, 8742–8747 (2002)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woese, C. R. & Fox, G. E. The concept of cellular evolution. J. Mol. Evol. 10, 1–6 (1977)

    ADS  CAS  PubMed  Google Scholar 

  5. Doolittle, W. F. & Brown, J. R. Tempo, mode, the progenote, and the universal root. Proc. Natl Acad. Sci. USA 91, 6721–6728 (1994)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355–9359 (1989)Together with ref. 7 , this paper presented the first evidence for rooting the tree of life on the bacterial stem, but see ref. 5 for a still-relevant discussion of these analyses and other contemporary ideas about early evolution.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dagan, T., Roettger, M., Bryant, D. & Martin, W. Genome networks root the tree of life between prokaryotic domains. Genome Biol. Evol. 2, 379–392 (2010)

    PubMed  PubMed Central  Google Scholar 

  9. Lake, J. A., Skophammer, R. G., Herbold, C. W. & Servin, J. A. Genome beginnings: rooting the tree of life. Phil. Trans. R. Soc. B 364, 2177–2185 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Skophammer, R. G., Servin, J. A., Herbold, C. W. & Lake, J. A. Evidence for a gram-positive, eubacterial root of the tree of life. Mol. Biol. Evol. 24, 1761–1768 (2007)

    CAS  PubMed  Google Scholar 

  11. Cavalier-Smith, T. Rooting the tree of life by transition analyses. Biol. Direct 1, 19 (2006)

    PubMed  PubMed Central  Google Scholar 

  12. Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356–20361 (2008)The first of a series of recent papers demonstrating that analyses of core genes using new phylogenetic models favour the eocyte tree rather than the three-domains tree.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doolittle, W. F. & Zhaxybayeva, O. in The Prokaryotes: Prokaryotic Biology and Symbiotic Associations (ed. Rosenberg, E. ) (Springer, 2013)A very clear discussion about the issues facing the integration of phylogenetics and classification given the evidence for extensive lateral gene transfer.

    Google Scholar 

  14. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990)Woese and colleagues present their arguments for the rooted three-domains tree of life.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Madigan, M. T., Martingo, J. M., Stahl, D. A. & Clark, D. P. Brock Biology of Microorganisms 13th edn (Benjamin Cummings, 2010)

    Google Scholar 

  16. Pace, N. R. Time for a change. Nature 441, 289 (2006)

    ADS  CAS  PubMed  Google Scholar 

  17. Pace, N. R. Mapping the tree of life: progress and prospects. Microbiol. Mol. Biol. Rev. 73, 565–576 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lake, J. A., Henderson, E., Oakes, M. & Clark, M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA 81, 3786–3790 (1984)This paper presents comparisons of ribosomal structure in Bacteria, Archaea and eukaryotes, providing the initial motivation for the eocyte hypothesis.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gribaldo, S., Poole, A. M., Daubin, V., Forterre, P. & Brochier-Armanet, C. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nature Rev. Microbiol. 8, 743–752 (2010)

    CAS  Google Scholar 

  20. Knoll, A. H., Javaux, E. J., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. B 361, 1023–1038 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Philippe, H. & Forterre, P. The rooting of the universal tree of life is not reliable. J. Mol. Evol. 49, 509–523 (1999)

    ADS  CAS  PubMed  Google Scholar 

  22. Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil. Trans. R. Soc. B 364, 2197–2207 (2009)

    PubMed  PubMed Central  Google Scholar 

  23. Penny, D., McComish, B. J., Charleston, M. A. & Hendy, M. D. Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol. 53, 711–723 (2001)

    ADS  CAS  PubMed  Google Scholar 

  24. Ho, S. Y. & Jermiin, L. Tracing the decay of the historical signal in biological sequence data. Syst. Biol. 53, 623–637 (2004)

    PubMed  Google Scholar 

  25. Lartillot, N., Brinkmann, H. & Philippe, H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7 (suppl. 1). S4 (2007)

    PubMed  PubMed Central  Google Scholar 

  26. Philippe, H. et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9, e1000602 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gouy, M. & Li, W. H. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature 339, 145–147 (1989)

    ADS  CAS  PubMed  Google Scholar 

  28. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Olsen, G. J. Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harb. Symp. Quant. Biol. 52, 825–837 (1987)

    CAS  PubMed  Google Scholar 

  30. Foster, P. G. & Hickey, D. A. Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J. Mol. Evol. 48, 284–290 (1999)

    ADS  CAS  PubMed  Google Scholar 

  31. Foster, P. G. Modeling compositional heterogeneity. Syst. Biol. 53, 485–495 (2004)

    PubMed  Google Scholar 

  32. Hirt, R. P. et al. Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl Acad. Sci. USA 96, 580–585 (1999)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lake, J. A. Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc. Natl Acad. Sci. USA 91, 1455–1459 (1994)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, Z. & Roberts, D. On the use of nucleic acid sequences to infer early branchings in the tree of life. Mol. Biol. Evol. 12, 451–458 (1995)An important early contribution demonstrating that modelling changing nucleotide composition in RNA sequences from different species supported the eocyte tree.

    CAS  PubMed  Google Scholar 

  35. Felsenstein, J. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401–410 (1978)

    Google Scholar 

  36. Yang, Z. & Rannala, B. Molecular phylogenetics: principles and practice. Nature Rev. Genet. 13, 303–314 (2012)

    CAS  PubMed  Google Scholar 

  37. Lake, J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331, 184–186 (1988)

    ADS  CAS  PubMed  Google Scholar 

  38. Sidow, A. & Wilson, A. C. Compositional statistics: an improvement of evolutionary parsimony and its application to deep branches in the tree of life. J. Mol. Evol. 31, 51–68 (1990)

    ADS  CAS  PubMed  Google Scholar 

  39. Tourasse, N. J. & Gouy, M. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol. Phylogenet. Evol. 13, 159–168 (1999)

    CAS  PubMed  Google Scholar 

  40. Yutin, N., Makarova, K. S., Mekhedov, S. L., Wolf, Y. I. & Koonin, E. V. The deep archaeal roots of eukaryotes. Mol. Biol. Evol. 25, 1619–1630 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Harris, J. K., Kelley, S. T., Spiegelman, G. B. & Pace, N. R. The genetic core of the universal ancestor. Genome Res. 13, 407–412 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Katoh, K., Kuma, K. & Miyata, T. Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny. J. Mol. Evol. 53, 477–484 (2001)

    ADS  CAS  PubMed  Google Scholar 

  43. Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006)

    ADS  CAS  PubMed  Google Scholar 

  44. Lake, J. A. The order of sequence alignment can bias the selection of tree topology. Mol. Biol. Evol. 8, 378–385 (1991)

    CAS  PubMed  Google Scholar 

  45. Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J. Universal trees based on large combined protein sequence data sets. Nature Genet. 28, 281–285 (2001)

    CAS  PubMed  Google Scholar 

  46. Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004)One of the most notable improvements in phylogenetic modelling in the last decade, providing a Bayesian framework for accommodating across-site compositional heterogeneity—a key feature of molecular sequence data.

    CAS  PubMed  Google Scholar 

  47. Guy, L. & Ettema, T. J. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011)

    CAS  PubMed  Google Scholar 

  48. Williams, T. A., Foster, P. G., Nye, T. M., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. R. Soc. Lond. B 279, 4870–4879 (2012)

    CAS  Google Scholar 

  49. Lasek-Nesselquist, E. & Gogarten, J. P. The effects of model choice and mitigating bias on the ribosomal tree of life. Mol. Phylogenet. Evol. 69, 17–38 (2013)

    PubMed  Google Scholar 

  50. Pester, M., Schleper, C. & Wagner, M. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr. Opin. Microbiol. 14, 300–306 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lloyd, K. G. et al. Predominant archaea in marine sediments degrade detrital proteins. Nature 496, 215–218 (2013)

    ADS  CAS  PubMed  Google Scholar 

  52. Graybeal, A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17 (1998)

    CAS  PubMed  Google Scholar 

  53. Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol. 6, 245–252 (2008)

    CAS  Google Scholar 

  55. Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011)

    CAS  PubMed  Google Scholar 

  56. Kelly, S., Wickstead, B. & Gull, K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc. R. Soc. Lond. B 278, 1009–1018 (2011)

    CAS  Google Scholar 

  57. Ettema, T. J., Lindas, A. C. & Bernander, R. An actin-based cytoskeleton in archaea. Mol. Microbiol. 80, 1052–1061 (2011)

    CAS  PubMed  Google Scholar 

  58. Yutin, N. & Koonin, E. V. Archaeal origin of tubulin. Biol. Direct 7, 10 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Koonin, E. V., Makarova, K. S. & Elkins, J. G. Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and “Korarchaeota”. Biol. Direct 2, 38 (2007)

    PubMed  PubMed Central  Google Scholar 

  60. Csurös, M. & Miklos, I. Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model. Mol. Biol. Evol. 26, 2087–2095 (2009)

    PubMed  PubMed Central  Google Scholar 

  61. Wolf, Y. I., Makarova, K. S., Yutin, N. & Koonin, E. V. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol. Direct 7, 46 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ribeiro, S. & Golding, G. B. The mosaic nature of the eukaryotic nucleus. Mol. Biol. Evol. 15, 779–788 (1998)Together with ref. 63 , this paper presented some of the first tree-based evidence that eukaryotes are genomic chimaeras containing some genes that are most similar to those of Bacteria and others to Archaea.

    CAS  PubMed  Google Scholar 

  63. Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA 95, 6239–6244 (1998)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Esser, C. et al. A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. 21, 1643–1660 (2004)

    CAS  PubMed  Google Scholar 

  65. Alsmark, C. et al. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol. 14, R19 (2013)

    PubMed  PubMed Central  Google Scholar 

  66. Cotton, J. A. & McInerney, J. O. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Proc. Natl Acad. Sci. USA 107, 17252–17255 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dagan, T. & Martin, W. The tree of one percent. Genome Biol. 7, 118 (2006)

    PubMed  PubMed Central  Google Scholar 

  68. Doolittle, W. F. & Bapteste, E. Pattern pluralism and the Tree of Life hypothesis. Proc. Natl Acad. Sci. USA 104, 2043–2049 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Williams, D. et al. A rooted net of life. Biol. Direct 6, 45 (2011)

    PubMed  PubMed Central  Google Scholar 

  70. Creevey, C. J., Doerks, T., Fitzpatrick, D. A., Raes, J. & Bork, P. Universally distributed single-copy genes indicate a constant rate of horizontal transfer. PLoS ONE 6, e22099 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boussau, B. et al. Genome-scale coestimation of species and gene trees. Genome Res. 23, 323–330 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Szollösi, G. J., Boussau, B., Abby, S. S., Tannier, E. & Daubin, V. Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc. Natl Acad. Sci. USA 109, 17513–17518 (2012)

    ADS  PubMed  PubMed Central  Google Scholar 

  73. Cohen, O., Gophna, U. & Pupko, T. The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol. Biol. Evol. 28, 1481–1489 (2011)

    CAS  PubMed  Google Scholar 

  74. Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801–3806 (1999)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000)

    Google Scholar 

  76. Parfrey, L. W., Lahr, D. J., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999)

    CAS  PubMed  Google Scholar 

  78. Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008)

    ADS  CAS  PubMed  Google Scholar 

  79. Fischer, W. W. Biogeochemistry: life before the rise of oxygen. Nature 455, 1051–1052 (2008)

    ADS  CAS  PubMed  Google Scholar 

  80. Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006)

    ADS  CAS  PubMed  Google Scholar 

  81. Papineau, D., Walker, J. J., Mojzsis, S. J. & Pace, N. R. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71, 4822–4832 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Allwood, A. C. et al. Controls on development and diversity of Early Archean stromatolites. Proc. Natl Acad. Sci. USA 106, 9548–9555 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tice, M. M. & Lowe, D. R. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549–552 (2004)

    ADS  CAS  PubMed  Google Scholar 

  84. Schopf, J. W. Fossil evidence of Archaean life. Phil. Trans. R. Soc. B 361, 869–885 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cavalier-Smith, T. Eukaryotes with no mitochondria. Nature 326, 332–333 (1987)

    ADS  CAS  PubMed  Google Scholar 

  86. Cavalier-Smith, T. in Endocytobiology II (eds Schwemmler, W. & Schenk, H.E.A. ) 1027–1034 (De Gruyter, 1983)

    Google Scholar 

  87. van der Giezen, M., Tovar, J. & Clark, C. G. Mitochondria-derived organelles in protists and fungi. Int. Rev. Cytol. 244, 175–225 (2005)

    CAS  PubMed  Google Scholar 

  88. Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998)

    ADS  CAS  PubMed  Google Scholar 

  89. Horner, D. S., Hirt, R. P., Kilvington, S., Lloyd, D. & Embley, T. M. Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc. R. Soc. Lond. B 263, 1053–1059 (1996)

    ADS  CAS  Google Scholar 

  90. Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010)

    ADS  CAS  PubMed  Google Scholar 

  91. Martin, W. & Koonin, E. V. Introns and the origin of nucleus-cytosol compartmentalization. Nature 440, 41–45 (2006)

    ADS  CAS  PubMed  Google Scholar 

  92. Lombard, J., Lopez-Garcia, P. & Moreira, D. The early evolution of lipid membranes and the three domains of life. Nature Rev. Microbiol. 10, 507–515 (2012)

    CAS  Google Scholar 

  93. Pitcher, A. et al. Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments. Appl. Environ. Microbiol. 77, 3468–3477 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. van de Vossenberg, J. L., Driessen, A. J. & Konings, W. N. The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2, 163–170 (1998)

    CAS  PubMed  Google Scholar 

  95. Boucher, Y., Kamekura, M. & Doolittle, W. F. Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol. 52, 515–527 (2004)

    CAS  PubMed  Google Scholar 

  96. Lombard, J., Lopez-Garcia, P. & Moreira, D. An ACP-independent fatty acid synthesis pathway in archaea: implications for the origin of phospholipids. Mol. Biol. Evol. 29, 3261–3265 (2012)

    CAS  PubMed  Google Scholar 

  97. Guldan, H., Matysik, F. M., Bocola, M., Sterner, R. & Babinger, P. Functional assignment of an enzyme that catalyzes the synthesis of an archaea-type ether lipid in bacteria. Angew. Chem. Int. Edn Engl. 50, 8188–8191 (2011)

    CAS  Google Scholar 

  98. Tan, H. H., Makino, A., Sudesh, K., Greimel, P. & Kobayashi, T. Spectroscopic evidence for the unusual stereochemical configuration of an endosome-specific lipid. Angew. Chem. Int. Edn Engl. 51, 533–535 (2012)

    CAS  Google Scholar 

  99. Shimada, H. & Yamagishi, A. Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry 50, 4114–4120 (2011)Reports the production of stable heterochiral membranes containing a mixture of bacterial- and archaeal-type lipids, demonstrating the feasibility of natural mixed membranes.

    CAS  PubMed  Google Scholar 

  100. Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998)

    ADS  CAS  PubMed  Google Scholar 

  101. Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hampl, V. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc. Natl Acad. Sci. USA 106, 3859–3864 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Song, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc. Natl Acad. Sci. USA 109, 14942–14947 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lindås, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl Acad. Sci. USA 105, 18942–18946 (2008)

    ADS  PubMed  PubMed Central  Google Scholar 

  105. Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Rev. Microbiol. 8, 731–741 (2010)

    CAS  Google Scholar 

  106. Blombach, F. et al. Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea. Biol. Direct 4, 39 (2009)

    PubMed  PubMed Central  Google Scholar 

  107. Daniels, J. P., Kelly, S., Wickstead, B. & Gull, K. Identification of a crenarchaeal orthologue of Elf1: implications for chromatin and transcription in Archaea. Biol. Direct 4, 24 (2009)

    PubMed  PubMed Central  Google Scholar 

  108. Rivera, M. C. & Lake, J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257, 74–76 (1992)

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Marie Curie postdoctoral fellowship to T.A.W. T.M.E. acknowledges support from the European Research Council Advanced Investigator Programme and the Wellcome Trust. We thank J. Archibald for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.A.W., P.G.F., C.J.C. and T.M.E. wrote the manuscript.

Corresponding author

Correspondence to T. Martin Embley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and additional references. (PDF 185 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, T., Foster, P., Cox, C. et al. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013). https://doi.org/10.1038/nature12779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12779

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing