Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The changing carbon cycle of the coastal ocean

Abstract

The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Processes that affect organic and inorganic carbon cycling and fluxes in the major coastal ocean subsystems.
Figure 2: Organic and inorganic carbon fluxes in the estuarine, tidal wetland and continental shelf subsystems of the coastal ocean.
Figure 3: Air–surface water CO2 exchange fluxes of different aquatic systems.
Figure 4: p CO 2 levels, net ecosystem production and organic and inorganic carbon fluxes in pre-industrial and current continental shelves.

References

  1. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007). This paper presents a new model of the quantitatively significant roles of inland waters, including streams and rivers and estuaries, in transporting and burying terrestrial carbon, degrading reactive organic carbon, and CO 2 emissions.

    Google Scholar 

  2. Cai, W.-J. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu. Rev. Mar. Sci. 3, 123–145 (2011).

    ADS  Google Scholar 

  3. Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geosci. 6, 597–607 (2013).

    ADS  CAS  Google Scholar 

  4. IPCC. Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, in the press)

  5. Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans and atmosphere. Front. Ecol. Environ 9, 53–60 (2011).

    Google Scholar 

  6. Hopkinson, C. S. et al. Terrestrial inputs of organic matter to coastal ecosystems: an intercomparison of chemical characteristics and bioavailability. Biogeochemistry 43, 211–234 (1998).

    CAS  Google Scholar 

  7. Testa, J. M., Kemp, W. M., Hopkinson, C. S. & Smith, S. V. in Estuarine Ecology 2nd edn (eds Day, J. W., Crump, B. C., Kemp, W. M. & Yanez-Arancibia, Y.) 381–416 (Wiley, 2013).

    Google Scholar 

  8. Hofmann, E. E. et al. Modeling the dynamics of continental shelf carbon. Annu. Rev. Mar. Sci. 3, 93–122 (2011).

    ADS  Google Scholar 

  9. Mayorga, E. et al. Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation. Environ. Model. Softw. 25, 837–853 (2010).

    Google Scholar 

  10. Dai, M. H., Yin, Z. Q., Meng, F. F., Liu, Q. & Cai, W. J. Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Curr. Op. Environ. Sustain. 4, 170–178 (2012).

    Google Scholar 

  11. Syvitski, J. P. M., Vorosmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    ADS  CAS  PubMed  Google Scholar 

  12. Hartmann, J., Jansen, N., Durr, H. H., Kempe, S. & Kohler, P. Global CO2-consumption by chemical weathering: what is the contribution of highly active weathering regions? Global Planet. Change 69, 185–194 (2009).

    ADS  Google Scholar 

  13. Meybeck, M. Carbon, nitrogen and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982). The first comprehensive summary of terrestrial export of organic and inorganic C, N and P from mostly natural watersheds of the world.

    ADS  CAS  Google Scholar 

  14. Raymond, P. A. et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Glob. Biogeochem. Cycles 21, GB4011 (2007).

    ADS  Google Scholar 

  15. Beaulieu, E., Godderis, Y., Donnadieu, Y., Labat, D. & Roelandt, C. High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nature Clim. Change 2, 346–349 (2012).

    ADS  CAS  Google Scholar 

  16. Laudon, H. et al. Cross-regional prediction of long-term trajectory of stream water DOC response to climate change. Geophys. Res. Lett. 39, L18404 (2012).

    ADS  Google Scholar 

  17. Hilton, R. G. et al. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nature Geosci. 1, 759–762 (2008).

    ADS  CAS  Google Scholar 

  18. Yoon, B. & Raymond, P. A. Dissolved organic matter export from a forested watershed during Hurricane Irene. Geophys. Res. Lett. 39, L18402 (2012).

    ADS  Google Scholar 

  19. Raymond, P. A. & Oh, N. H. An empirical study of climatic controls on riverine C export from three major U.S. watersheds. Glob. Biogeochem. Cycles 21, GB2022 (2007).

    ADS  Google Scholar 

  20. Godsey, S. E., Kirchner, J. W. & Clow, D. W. Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrol. Processes 23, 1844–1864 (2009).

    ADS  CAS  Google Scholar 

  21. Bianchi, T. S. et al. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event. Geophys. Res. Lett. 40, 116–122 (2013).

    ADS  CAS  Google Scholar 

  22. Laruelle, G. G. et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17, 2029–2051 (2013).

    ADS  Google Scholar 

  23. Bauer, J. E. & Bianchi, T. S. in Treatise on Estuarine and Coastal Science, Vol. 5 (eds Wolanski, E. & McLusky, D. S.) 7–67 (Academic, 2011).

    Google Scholar 

  24. Bianchi, T. S. & Bauer, J. E. 2011. in Treatise on Estuarine and Coastal Science, Vol. 5 (eds Wolanski, E. & McLusky, D. S.) 69–117 (Academic, 2011).

    Google Scholar 

  25. Raymond, P. A. & Bauer, J. E. Use of 14C and 13C natural abundances as a tool for evaluating freshwater, estuarine and coastal organic matter sources and cycling. Org. Geochem. 32, 469–485 (2001).

    CAS  Google Scholar 

  26. Raymond, P. A. & Hopkinson, C. S. Jr. Ecosystem modulation of dissolved carbon age in a temperate marsh-dominated estuary. Ecosystems 6, 694–705 (2003).

    CAS  Google Scholar 

  27. Keil, R. G., Mayer, L. M., Quay, P. E., Richey, J. E. & Hedges, J. I. Loss of organic matter from riverine particles in deltas. Geochim. Cosmochim. Acta 61, 1507–1511 (1997).

    ADS  CAS  Google Scholar 

  28. Mayer, L. M., Schick, L. L., Skorko, K. & Boss, E. Photodissolution of particulate organic matter from sediments. Limnol. Oceanogr. 51, 1064–1071 (2006).

    ADS  CAS  Google Scholar 

  29. Moran, M. A., Sheldon, W. M. & Zepp, R. G. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr. 45, 1254–1264 (2000).

    ADS  CAS  Google Scholar 

  30. Smith, E. M. & Benner, R. Photochemical transformations of riverine dissolved organic matter: effects on estuarine bacterial metabolism and nutrient demand. Aquat. Microb. Ecol. 40, 37–50 (2005).

    Google Scholar 

  31. Vanderborght, J. P., Wollast, R., Loijens, M. & Regnier, P. Application of a transport-reaction model to the estimation of biogas fluxes in the Scheldt estuary. Biogeochemistry 59, 207–237 (2002).

    CAS  Google Scholar 

  32. Sholkovitz, E. R. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim. Cosmochim. Acta 40, 831–845 (1976).

    ADS  CAS  Google Scholar 

  33. Borges, A. V. & Abril, G. in Treatise on Estuarine and Coastal Science, Vol. 5 (eds Wolanski, E. & McLusky, D. S.) 119–161 (Academic, 2011). This article is a synthesis of the state of our knowledge of the inorganic carbon cycle in coastal waters.

    Google Scholar 

  34. Mantoura, R. F. C. & Woodward, E. Conservative behavior of riverine dissolved organic matter in the Severn estuary. Geochim. Cosmochim. Acta 47, 1293–1309 (1983). This is the first study to quantitatively assess riverine DOC supply and fate in estuaries using salinity as a conservative tracer and to assess the reactivity of this DOC in ocean carbon budgets.

    ADS  CAS  Google Scholar 

  35. Hopkinson, C. S. & Vallino, J. J. The relationship between man's activities in watersheds and estuaries: a model of runoff effects on patterns of ecosystem metabolism. Estuaries 18, 598–621 (1995).

    CAS  Google Scholar 

  36. Howarth, R. et al. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front. Ecol. Environ 9, 18–26 (2011).

    Google Scholar 

  37. Hofmann, A. F., Soetaert, K. & Middelburg, J. J. Present nitrogen and carbon dynamics in the Scheldt estuary using a novel 1-D model. Biogeosciences 5, 981–1006 (2008).

    ADS  CAS  Google Scholar 

  38. Frankignoulle, M. et al. Carbon dioxide emission from European estuaries. Science 282, 434–436 (1998). The first regional synthesis of CO 2 emission fluxes from estuaries, demonstrating their importance to regional carbon budgets.

    ADS  CAS  PubMed  Google Scholar 

  39. Borges, A. V., Delille, B. & Frankignoulle, M. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys. Res. Lett. 32, L14601 (2005).

    ADS  Google Scholar 

  40. Laruelle, G. G. & Dürr, H. H. Slomp, C.P. & Borges, A.V. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys. Res. Lett. 37, L15607 (2010).

    ADS  Google Scholar 

  41. Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry, An Analysis of Global Change 3rd edn (Academic, 2013).

    Google Scholar 

  42. Cai, W.-J. & Wang, Y. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol. Oceanogr. 43, 657–668 (1998).

    ADS  CAS  Google Scholar 

  43. Raymond, P. A., Caraco, N. F. & Cole, J. J. Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20, 381–390 (1997).

    CAS  Google Scholar 

  44. Cai, W.-J., Wang, Y. C., Krest, J. & Moore, W. S. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochim. Cosmochim. Acta 67, 631–639 (2003).

    ADS  CAS  Google Scholar 

  45. Cai, W.-J. Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume. Geophys. Res. Lett. 30, 1032 (2003).

    ADS  Google Scholar 

  46. Zhai, W., Dai, M. & Guo, X. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Mar. Chem. 107, 342–356 (2007).

    CAS  Google Scholar 

  47. Dittmar, T., Hertkorn, N., Kattner, G. & Lara, R. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 20, GB1012 (2006).

    ADS  Google Scholar 

  48. Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 . Front. Ecol. Environ. 9, 552–560 (2011).

    Google Scholar 

  49. Hopkinson, C. S., Cai, W. J. & Hu, X. Carbon sequestration in wetland dominated coastal systems - a global sink of rapidly diminishing magnitude. Curr. Op. Environ. Sustain. 4, 1–9 (2012).

    Google Scholar 

  50. Mackenzie, F. T., Andersson, A. J., Lerman, A. & Ver, L. M. in The Sea Vol. 13 (eds Robinson, A. R. & Brink, K. H) 193–225 (Harvard Univ. Press, 2005). This is a comprehensive historical description of carbon cycling processes and fluxes through Earth's past, present and future.

    Google Scholar 

  51. Jahnke, R. in Carbon and Nutrient Fluxes in Continental Margins (eds Liu, K. K., Atkinson, L., Quinones, R. & Talaure-McManus, L.) 597–615 (Springer, 2010).

    Google Scholar 

  52. Liu, K. K., Atkinson, L., Quinones, R. & Talaure-McManus, L. Carbon and Nutrient Fluxes in Continental Margins (Springer, 2010).

    Google Scholar 

  53. Azetsu-Scott, K. & Passow, U. Ascending marine particles: significance of transparent exopolymer particles (TEP) in the upper ocean. Limnol. Oceanogr. 49, 741–748 (2004).

    ADS  CAS  Google Scholar 

  54. Blair, N. E. & Aller, R. C. The fate of terrestrial organic carbon in the marine environment. Annu. Rev. Mar. Sci. 4, 401–423 (2012).

    ADS  Google Scholar 

  55. Bauer, J. E., Williams, P. M. & Druffel, E. R. M. 14C activity of dissolved organic carbon fractions in the central North Pacific and Sargasso Sea. Nature 357, 667–670 (1992).

    ADS  CAS  Google Scholar 

  56. Stubbins, A. et al. Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol. Oceanogr. 55, 1467–1477 (2010).

    ADS  CAS  Google Scholar 

  57. Hertkorn, N. et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 70, 2990–3010 (2006).

    ADS  CAS  Google Scholar 

  58. Hernes, P. J. & Benner, R. Photochemical and microbial degradation of dissolved lignin phenols: implications for the fate of terrigenous dissolved organic matter in marine environments. J. Geophys. Res. Oceans 108, 3291 (2003).

    ADS  Google Scholar 

  59. Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473–19481 (2011).

    ADS  CAS  PubMed  Google Scholar 

  60. Tsunogai, S., Watanabe, S. & Sato, T. T. Is there a “continental shelf pump” for the absorption of atmospheric CO2? Tellus 51B, 701–712 (1999).

    ADS  CAS  Google Scholar 

  61. Cai, W.-J., Dai, M. & Wang, Y. Air–sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophys. Res. Lett. 33, L12603 (2006).

    ADS  Google Scholar 

  62. Jiang, L.-Q., Cai, W.-J., Wanninkhof, R., Wang, Y. & Lüger, H. Air–sea CO2 fluxes on the U.S. South Atlantic Bight: spatial and seasonal variability. J. Geophys. Res. 113, C07019 (2008).

    ADS  Google Scholar 

  63. Walsh, J. J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350, 53–55 (1991). This is an influential paper summarizing a major US-funded effort, concluding that shelf-break mixing provides a mechanism for CO 2 loss from ocean margins.

    ADS  CAS  Google Scholar 

  64. Huang, W.-J., Cai, W.-J., Castelao, R. M., Wang, Y. & Lohrenz, S. E. Effects of a wind-driven cross-shelf large river plume on biological production and CO2 uptake in the Gulf of Mexico during spring. Limnol. Oceanogr. 58, 1727–1735 (2013).

    ADS  CAS  Google Scholar 

  65. Hales, B., Takahashi, T. & Bandstra, L. Atmospheric CO2 uptake by a coastal upwelling system. Glob. Biogeochem. Cycles 19, GB1009 (2005).

    ADS  Google Scholar 

  66. Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., & Kang, Y. Air–sea exchanges of CO2 in world's coastal seas. Biogeosciences 10, 5041–5105 (2013).

    Google Scholar 

  67. Bates, N. R., Moran, S. B., Hansell, D. A. & Mathis, J. T. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophys. Res. Lett. 33, L23609 (2006).

    ADS  Google Scholar 

  68. Smith, S. V. & Hollibaugh, J. T. Coastal metabolism and the oceanic carbon balance. Rev. Geophys. 31, 75–89 (1993). One of the first papers to show that coastal oceans are net heterotrophic due to respiration enhanced by exported terrestrial oceanic carbon.

    ADS  Google Scholar 

  69. Mackenzie, F. T., Lerman, A. & Andersson, A. J. Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1, 11–32 (2004).

    ADS  CAS  Google Scholar 

  70. del Giorgio, P. A. & Williams, P. J. Respiration in Aquatic Ecosystems (Oxford Univ. Press, 2005).

    Google Scholar 

  71. Le Quéré et al. The global carbon budget 1959–2011. Earth Syst. Sci. Data 5, 165–185 (2013).

    ADS  Google Scholar 

  72. Stallard, R. F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).

    ADS  CAS  Google Scholar 

  73. Smith, S. V., Renwick, W. H., Buddemeier, R. W. & Crossland, C. J. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Glob. Biogeochem. Cycles 15, 697–707 (2001).

    ADS  CAS  Google Scholar 

  74. Raymond, P. A., Oh, N. H., Turner, R. E. & Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451, 449–452 (2008).

    ADS  CAS  PubMed  Google Scholar 

  75. Wilson, H. F. & Xenopoulos, M. A. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geosci. 2, 37–41 (2009).

    ADS  CAS  Google Scholar 

  76. Raymond, P. A. et al. Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Mar. Chem. 92, 353–366 (2004).

    CAS  Google Scholar 

  77. Moore, S. et al. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493, 660–663 (2013).

    ADS  CAS  PubMed  Google Scholar 

  78. Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–540 (2007).

    ADS  CAS  PubMed  Google Scholar 

  79. Calmels, D., Gaillardet, J., Brenot, A. & France-Lanord, C. Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: climatic perspectives. Geology 35, 1003–1006 (2007).

    ADS  CAS  Google Scholar 

  80. Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geosci. 4, 766–770 (2011).

    ADS  CAS  Google Scholar 

  81. Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010). A paper describing the close coupling between land and ocean systems and the importance of anthropogenic impacts on coastal and open ocean systems.

    ADS  CAS  PubMed  Google Scholar 

  82. Dai, M. et al. Oxygen depletion in the upper reach of the Pearl River estuary during a very drought winter. Mar. Chem. 102, 159–169 (2006).

    CAS  Google Scholar 

  83. Scavia, D. et al. Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 25, 149–164 (2002).

    Google Scholar 

  84. Stedmon, C. A., Amon, R. M. W., Rinehart, A. J. & Walker, S. A. The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: pan Arctic trends and differences. Mar. Chem. 124, 108–118 (2011).

    CAS  Google Scholar 

  85. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    ADS  CAS  Google Scholar 

  86. Duarte, C. M., Middelburg, J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005). This paper describes a multifaceted approach to quantifying the carbon fixed by estuarine macrophytes and its relevance to organic carbon sequestration in coastal sediments and heterotrophy in adjacent coastal systems.

    ADS  CAS  Google Scholar 

  87. Cai, W.-J., Wang, Z. H. A. & Wang, Y. C. The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land-sea interface and the ocean. Geophys. Res. Lett. 30, 1849 (2003).

    ADS  Google Scholar 

  88. Andersson, A. J., Mackenzie, F. T. & Lerman, A. Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am. J. Sci. 305, 875–918 (2005).

    ADS  CAS  Google Scholar 

  89. Krumins, V., Gehlen, M., Arndt, S., Van Cappellen, P. & Regnier, P. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change. Biogeosciences 10, 371–398 (2013).

    ADS  Google Scholar 

  90. Bianchi, T. S. & Canuel, E. A. Chemical Biomarkers in Aquatic Ecosystems (Princeton Univ. Press, 2011).

    Google Scholar 

  91. Ingalls, A. E. & Pearson, A. Ten years of compound-specific radiocarbon analysis. Oceanography 18, 18–31 (2005).

    Google Scholar 

  92. Mopper, K., Stubbins, A., Ritchie, J. D., Bialk, H. M. & Hatcher, P. G. Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chem. Rev. 107, 419–442 (2007).

    CAS  PubMed  Google Scholar 

  93. Kujawinski, E. B. The impact of microbial metabolism on marine dissolved organic matter. Annu. Rev. Mar. Sci. 3, 567–599 (2011).

    ADS  Google Scholar 

  94. Seitzinger, S. P. & Giblin, A. E. Estimating denitrification in North Atlantic continental shelf sediments. Biogeochemistry 35, 235–260 (1996).

    CAS  Google Scholar 

  95. Collins, W. J. et al. Development and evaluation of an Earth-system model–HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).

    ADS  Google Scholar 

  96. da Cunha, L. C., Buitenhuis, E. T., Le Quéré, C., Giraud, X. & Ludwig, W. Potential impact of changes in river nutrient supply on global ocean biogeochemistry. Glob. Biogeochem. Cycles 21, GB4007 (2007).

    ADS  Google Scholar 

  97. Bernard, C., Dürr, H., Heinze, C., Segschneider, J. & Maier-Reimer, E. Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean – a model study. Biogeosciences 8, 551–564 (2011).

    ADS  CAS  Google Scholar 

  98. Lachkar, Z. & Gruber, N. What controls biological productivity in coastal upwelling systems? Insights from a comparative modeling study. Biogeosciences 8, 5617–5652 (2011).

    Google Scholar 

  99. Chen, R. F., Fry, B., Hopkinson, C. S., Repeta, D. J. & Peltzer, E. T. Dissolved organic carbon on Georges Bank. Cont. Shelf Res. 16, 409–420 (1996).

    ADS  CAS  Google Scholar 

  100. Hopkinson, C. S. & Vallino, J. J. Efficient export of carbon to the deep ocean through dissolved organic carbon. Nature 433, 142–145 (2005).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation's Chemical and Biological Oceanography, Integrated Carbon Cycle Research, Arctic Natural Sciences, Long-Term Ecological Research, and Ecosystem Ecology programs; NASA Interdisciplinary Research in Earth Science program NOAA; Georgia Sea Grant; the European Union's Seventh Framework Program project GEOCARBON; and the government of the Brussels-Capital Region. We acknowledge our late friend and colleague Y. Wang, whose contributions to coastal carbon cycle research and CO2 measurement technology have significantly advanced the field. We also thank A. Grottoli for comments and discussion on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Bauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, J., Cai, WJ., Raymond, P. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013). https://doi.org/10.1038/nature12857

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12857

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing