Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin

Subjects

Abstract

Social behaviours in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviours, the neural mechanisms by which social reward is encoded by the brain are largely unknown. Here we demonstrate that in mice oxytocin acts as a social reinforcement signal within the nucleus accumbens core, where it elicits a presynaptically expressed long-term depression of excitatory synaptic transmission in medium spiny neurons. Although the nucleus accumbens receives oxytocin-receptor-containing inputs from several brain regions, genetic deletion of these receptors specifically from dorsal raphe nucleus, which provides serotonergic (5-hydroxytryptamine; 5-HT) innervation to the nucleus accumbens, abolishes the reinforcing properties of social interaction. Furthermore, oxytocin-induced synaptic plasticity requires activation of nucleus accumbens 5-HT1B receptors, the blockade of which prevents social reward. These results demonstrate that the rewarding properties of social interaction in mice require the coordinated activity of oxytocin and 5-HT in the nucleus accumbens, a mechanistic insight with implications for understanding the pathogenesis of social dysfunction in neuropsychiatric disorders such as autism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxytocin is required for social CPP.
Figure 2: Oxytocin induces LTD in the NAc.
Figure 3: Presynaptic OTRs are required for social CPP.
Figure 4: NAc OTRs in presynaptic terminals originating from the dorsal raphe nucleus are required for social CPP and OT-LTD.
Figure 5: OT-LTD in NAc requires 5HT1B receptors.
Figure 6: Social CPP requires NAc 5HT1B receptors.

Similar content being viewed by others

References

  1. Kelley, A. E. & Berridge, K. C. The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22, 3306–3311 (2002)

    Article  CAS  Google Scholar 

  2. Insel, T. R. Is social attachment an addictive disorder? Physiol. Behav. 79, 351–357 (2003)

    Article  CAS  Google Scholar 

  3. Shultz, S., Opie, C. & Atkinson, Q. D. Stepwise evolution of stable sociality in primates. Nature 479, 219–222 (2011)

    Article  ADS  CAS  Google Scholar 

  4. Young, L. J. & Wang, Z. The neurobiology of pair bonding. Nature Neurosci. 7, 1048–1054 (2004)

    Article  CAS  Google Scholar 

  5. Lee, H.-J., Macbeth, A. H., Pagani, J. H. & Young, W. S. Oxytocin: the great facilitator of life. Prog. Neurobiol. 88, 127–151 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ross, H. E. et al. Characterization of the oxytocin system regulating affliative behavior in female prairie voles. Neurosci. 162, 892–903 (2009)

    Article  CAS  Google Scholar 

  7. Yamasue, H. et al. Integrative approaches utilizing oxytocin to enhance prosocial behavior: from animal and human social behavior to autistic social dysfunction. J. Neuroscience 32, 14109–14117 (2012)

    Article  CAS  Google Scholar 

  8. Anderson, P. K. & Hill, J. Mus musculus: experimental induction of territory formation. Science 148, 1753–1755 (1965)

    Article  ADS  CAS  Google Scholar 

  9. Riedman, M. L. The evolution of alloparental care and adoption in mammals and birds. Q. Rev. Biol. 57, 405–435 (1982)

    Article  Google Scholar 

  10. Holy, T. E. & Guo, Z. Ultrasonic songs of male mice. PLoS Biol. 3, e386 (2005)

    Article  Google Scholar 

  11. Panksepp, J. Behavior. Empathy and the laws of affect. Science 334, 1358–1359 (2011)

    Article  ADS  CAS  Google Scholar 

  12. Hodgson, S. R., Hofford, R. S., Roberts, K. W., Wellman, P. J. & Eitan, S. Socially induced morphine pseudosensitization in adolescent mice. Behav. Pharmacol. 21, 112–120 (2010)

    Article  CAS  Google Scholar 

  13. Tzschentke, T. M. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict. Biol. 12, 227–462 (2007)

    Article  CAS  Google Scholar 

  14. Panksepp, J. B. & Lahvis, G. P. Social reward among juvenile mice. Genes Brain Behav. 6, 661–671 (2007)

    Article  CAS  Google Scholar 

  15. Rosen, G. J., de Vries, G. J., Goldman, S. L., Goldman, B. D. & Forger, N. G. Distribution of oxytocin in the brain of a eusocial rodent. Neuroscience 155, 809–817 (2008)

    Article  CAS  Google Scholar 

  16. Hermes, M. L., Buijs, R. M., Masson-Pévet, M. & Pévet, P. Oxytocinergic innervation of the brain of the garden dormouse (Eliomys quercinus L.). J. Comp. Neurol. 273, 252–262 (1988)

    Article  CAS  Google Scholar 

  17. Phillipson, O. T. & Griffiths, A. C. The topographic order of inputs to nucleus accumbens in the rat. Neuroscience. 16, 275–296 (1985)

    Article  CAS  Google Scholar 

  18. Brog, J. S., Ongse, A. S., Deutch, A. Y. & Zahm, D. S. The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J. Comp. Neurol. 278, 255–278 (1993)

    Article  Google Scholar 

  19. Knobloch, H. S. et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566 (2012)

    Article  CAS  Google Scholar 

  20. Lobo, M. K. & Nestler, E. J. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front. Neuroanat. 5, 41 (2011)

    Article  Google Scholar 

  21. Shuen, J. A., Chen, M., Gloss, B. & Calakos, N. Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J. Neurosci. 28, 2681–2685 (2008)

    Article  CAS  Google Scholar 

  22. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Yoshida, M. et al. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 29, 2259–2271 (2009)

    Article  CAS  Google Scholar 

  24. Lee, H.-J., Caldwell, H. K., Macbeth, A. H., Tolu, S. G. & Young, W. S. A conditional knockout mouse line of the oxytocin receptor. Endocrinology 149, 3256–3263 (2008)

    Article  CAS  Google Scholar 

  25. Brunner, D., Buhot, M. C., Hen, R. & Hofer, M. Anxiety, motor activation, and maternal-infant interactions in 5HT1B knockout mice. Behav. Neurosci. 113, 587–601 (1999)

    Article  CAS  Google Scholar 

  26. Furay, A. R., McDevitt, R. A., Miczek, K. A. & Neumaier, J. F. 5–HT1B mRNA expression after chronic social stress. Behav. Brain Res. 224, 350–357 (2011)

    Article  CAS  Google Scholar 

  27. Orabona, G. M. et al. HTR1B and HTR2C in autism spectrum disorders in Brazilian families. Brain Res. 1250, 14–19 (2009); erratum. 1264, 127 (2009)

    Article  CAS  Google Scholar 

  28. Mathur, B. N., Capik, N. A., Alvarez, V. A. & Lovinger, D. M. Serotonin induces long-term depression at corticostriatal synapses. J. Neurosci. 31, 7402–7411 (2011)

    Article  CAS  Google Scholar 

  29. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013)

    Article  ADS  CAS  Google Scholar 

  30. Capper-Loup, C., Canales, J. J., Kadaba, N. & Graybiel, A. M. Concurrent activation of dopamine D1 and D2 receptors is required to evoke neural and behavioral phenotypes of cocaine sensitization. J. Neurosci. 22, 6218–6227 (2002)

    Article  CAS  Google Scholar 

  31. Nambu, A. Seven problems on the basal ganglia. Curr. Opin. Neurobiol. 18, 595–604 (2008)

    Article  CAS  Google Scholar 

  32. Perreault, M. L., Hasbi, A., O’Dowd, B. F. & George, S. R. The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia. Front. Neuroanat. 5, 31 (2011)

    Article  Google Scholar 

  33. Doya, K. Metalearning and neuromodulation. Neural Netw. 15, 495–506 (2002)

    Article  Google Scholar 

  34. Nakamura, K., Matsumoto, M. & Hikosaka, O. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J. Neurosci. 28, 5331–5343 (2008)

    Article  CAS  Google Scholar 

  35. Tanaka, S. C. et al. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neurosci. 7, 887–893 (2004)

    Article  CAS  Google Scholar 

  36. Boureau, Y.-L. & Dayan, P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 36, 74–97 (2011)

    Article  CAS  Google Scholar 

  37. Silverman, J. L., Yang, M., Lord, C. & Crawley, J. N. Behavioural phenotyping assays for mouse models of autism. Nature Rev. Neurosci. 11, 490–502 (2010)

    Article  CAS  Google Scholar 

  38. Panksepp, J. B. et al. Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice. PLoS ONE 2, e351 (2007)

    Article  ADS  Google Scholar 

  39. Aronov, D., Andalman, A. S. & Fee, M. S. A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320, 630–634 (2008)

    Article  ADS  CAS  Google Scholar 

  40. Andalman, A. S. & Fee, M. S. A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors. Proc. Natl Acad. Sci. USA 106, 12518–12523 (2009)

    Article  ADS  CAS  Google Scholar 

  41. Mebatsion, T., Konig, M. & Conzelmann, K. K. Budding of rabies virus particles in the absence of the spike glycoprotein. Cell 84, 941–951 (1996)

    Article  CAS  Google Scholar 

  42. Wickersham, I. R., Sullivan, H. A. & Seung, H. S. Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nature Protocols 5, 595–606 (2010)

    Article  CAS  Google Scholar 

  43. Wickersham, I. R., Finke, S., Conzelmann, K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods 4, 47–49 (2007)

    Article  CAS  Google Scholar 

  44. Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008)

    Article  CAS  Google Scholar 

  45. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012)

    Article  ADS  CAS  Google Scholar 

  46. Ben-Barak, Y., Russell, J., Whitnall, M., Ozato, K. & Gainer, H. Neurophysin in the hypothalamo-neurohypophysial system. I. Production and characterization of monoclonal antibodies. J. Neurosci. 5, 81–97 (1985)

    Article  CAS  Google Scholar 

  47. Whitnall, M. H. Key. S., Ben-Barak, Y., Ozato, K. & Gainer, H. Neurophysin in the hypothalamo-neurohypophysial system. II. Immunocytochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons. J. Neurosci. 5, 98–109 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Malenka laboratory for comments; A. Andalman, W. Xu, B.K. Lim and T. Sudhof for technical advice; and the SIM1 Animal Care facility for husbandry support. The OT-neurophysin antibody was a gift of H. Gainer. OTR-Venus reporter mice were a gift of L. J. Young. D1-TdTomato BAC transgenic mice were provided by N. Calakos. The rabies virus complementary DNA plasmid and viral component-expressing plasmids were gifts from K. Conzelmann and I. Wickersham. HHK-B19G cells were a gift from E. Callaway. AAVs were produced by the Stanford NGVVC (supported by National Institutes of Health grant NIH NS069375). The AAV-DJ helper plasmid was a gift from M. Kay. This work was supported by funding from the Simons Foundation Autism Research Initiative (R.C.M.), N.I.H. (R.C.M.), and a Berry Foundation Postdoctoral Fellowship (G.D.)

Author information

Authors and Affiliations

Authors

Contributions

G.D. and R.C.M. designed the study, interpreted results and wrote the paper. G.D. performed behavioural experiments, electrophysiology, and confocal microscopy. G.D., A.D. and K.W.H. performed stereotaxic injections and immunohistochemistry. K.W.H. generated RBV viruses. All authors edited the paper.

Corresponding author

Correspondence to Robert C. Malenka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-16. (PDF 2038 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dölen, G., Darvishzadeh, A., Huang, K. et al. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013). https://doi.org/10.1038/nature12518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12518

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing