Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ice-sheet mass balance and climate change

Abstract

Since the 2007 Intergovernmental Panel on Climate Change Fourth Assessment Report, new observations of ice-sheet mass balance and improved computer simulations of ice-sheet response to continuing climate change have been published. Whereas Greenland is losing ice mass at an increasing pace, current Antarctic ice loss is likely to be less than some recently published estimates. It remains unclear whether East Antarctica has been gaining or losing ice mass over the past 20 years, and uncertainties in ice-mass change for West Antarctica and the Antarctic Peninsula remain large. We discuss the past six years of progress and examine the key problems that remain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of estimates of rates of ice mass change for Antarctica and Greenland.
Figure 2: Comparison of projected global, Antarctic and Greenland surface air temperature and snowfall anomalies to 2100.
Figure 3: Illustration of a marine ice sheet and its interaction with the ocean.

References

  1. Solomon, S., et al., eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2007)

  2. Shepherd, A. et al. A reconciled estimate of ice sheet mass balance. Science 338, 1183–1189 (2012). Gives an overall view of remote sensing of ice-sheet mass balance and arrives at a nearly reconciled estimate of the contribution of the ice sheets to sea-level rise.

    ADS  CAS  PubMed  Google Scholar 

  3. Davis, C. H. & Li, Y. H. McConnell, J. R., Frey, M. M. & Hanna, E. Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science 308, 1898–1901 (2005)

    ADS  CAS  PubMed  Google Scholar 

  4. Zwally, H. J. et al. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol. 51, 509–527 (2005)

    ADS  Google Scholar 

  5. Zwally, H. J. et al. Greenland ice sheet mass balance: distribution of increased mass loss with climate warming. J. Glaciol. 57, 88–102 (2011)

    ADS  Google Scholar 

  6. Velicogna, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett. 36, L19503 (2009)

    ADS  Google Scholar 

  7. Rignot, E. & Kanagaratnam, P. Changes in the velocity structure of the Greenland ice sheet. Science 311, 986–990 (2006)

    ADS  CAS  PubMed  Google Scholar 

  8. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011)

    ADS  Google Scholar 

  9. Ettema, J. et al. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Lett. 36, L12501 (2009)

    ADS  Google Scholar 

  10. Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E. & Munneke, P. K. A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett. 39, L04501 (2012)

    ADS  Google Scholar 

  11. King, M. A. et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature 491, 586–589 (2012)

    ADS  CAS  PubMed  Google Scholar 

  12. Whitehouse, P. L., Bentley, M. J. & Le Brocq, A. M. A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quat. Sci. Rev. 32, 1–24 (2012)

    ADS  Google Scholar 

  13. Ivins, E. R. et al. Antarctic contribution to sea-level rise observed by GRACE with improved GIA correction. J. Geophys. Res.. http://dx.doi.org/10.1002/jgrb.50208 (in the press)

  14. Thomas, I. D. et al. Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys. Res. Lett. 38, L22302 (2011)

    ADS  Google Scholar 

  15. Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A. & Thomas, I. D. A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int. 190, 1464–1482 (2012). Demonstrates that new GIA models for Antarctica, which have been central to reconciling mass-balance estimates, greatly improve the fit between modelled and observed (GPS) uplift rates.

    ADS  Google Scholar 

  16. Sasgen, I. et al. Antarctic ice-mass balance 2002 to 2011: regional re-analysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment. Cryosphere Discuss. 6, 3703–3732 (2012)

    ADS  Google Scholar 

  17. Horwath, M., Legresy, B., Remy, F., Blarel, F. & Lemoine, J. M. Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophys. J. Int. 189, 863–876 (2012)

    ADS  Google Scholar 

  18. Zwally, H. J. & Giovinetto, M. B. Overview and assessment of Antarctic ice-sheet mass balance estimates: 1992–2009. Surv. Geophys. 32, 351–376 (2011)

    ADS  Google Scholar 

  19. Zwally, H. J. et al. Mass balance of Antarctic ice sheet 1992 to 2008 from ERS and ICESat: gains exceed losses. ISMASS 2012 Workshop (2012); available at http://www.climate-cryosphere.org/en/events/2012/ISMASS/AntarcticIceSheet.html

  20. Sasgen, I. et al. Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett. 333-334, 293–303 (2012)

    ADS  CAS  Google Scholar 

  21. Ritz, C., Rommelaere, V. & Dumas, C. Modeling the evolution of Antarctic ice sheet over the last 420 000 years: implications for altitude changes in the Vostok region. J. Geophys. Res. 106, 31943–31964 (2001)

    ADS  Google Scholar 

  22. Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. 112, F03S28 (2007)

    ADS  Google Scholar 

  23. Pollard, D. & Deconto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009)

    ADS  CAS  Google Scholar 

  24. Bueler, E. & Brown, J. Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model. J. Geophys. Res. 114, F03008 (2009)

    ADS  Google Scholar 

  25. Pattyn, F. A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development and ice flow across subglacial lakes. J. Geophys. Res. 108 (B8). 2382 (2003)

    ADS  Google Scholar 

  26. Blatter, H. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol. 41, 333–344 (1995)

    ADS  Google Scholar 

  27. Gillet-Chaulet, F. et al. Greenland Ice Sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere 6, 1561–1576 (2012). Represents the first complete implementation of full Stokes in dynamical ice-sheet models.

    ADS  Google Scholar 

  28. Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. 117, F01022 (2012)

    ADS  Google Scholar 

  29. Cornford, S. L. et al. Adaptive mesh, finite volume modeling of marine ice sheets. J. Comput. Phys. 232, 529–549 (2013). A complete and correct implementation of 3D grounding line dynamics applied to Pine Island glacier for a loss of ice shelf buttressing, uniquely showing large grounding-line retreat.

    ADS  MathSciNet  Google Scholar 

  30. Moon, T. & Joughin, I. Smith, B. & Howat, I. 21st-century evolution of Greenland outlet glacier velocities. Science 336, 576–578 (2012)

    ADS  CAS  PubMed  Google Scholar 

  31. Gogineni, P. CReSIS Data Products. http://data.cresis.ku.edu/ (2012)

  32. Arthern, R. J. & Gudmundsson, G. H. Initialization of ice-sheet forecasts viewed as an inverse Robin problem. J. Glaciol. 56, 527–533 (2010)

    ADS  Google Scholar 

  33. Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004)

    ADS  Google Scholar 

  34. Rignot, E. et al. Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula. Geophys. Res. Lett. 32, L07502 (2005)

    ADS  Google Scholar 

  35. Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geosci. 4, 519–523 (2011)

    ADS  CAS  Google Scholar 

  36. MacAyeal, D. R. Scambos, T. A., Hulbe, C. L. & Fahnestock, M. A. Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. J. Glaciol. 49, 22–36 (2003)

    ADS  Google Scholar 

  37. Joughin, I., Smith, B. E. & Holland, D. M. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophys. Res. Lett. 37, L20502 (2010)

    ADS  Google Scholar 

  38. Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci. 1, 106–110 (2008)

    ADS  CAS  Google Scholar 

  39. Pattyn, F. et al. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. J. Glaciol (in the press). A community inter-comparison exercise that shows the capabilities of current ice-sheet models for robustly simulating grounding-line migration, which is key for predicting marine ice-sheet behaviour.

  40. Greischar, L. L. & Bentley, C. R. Isostatic equilibrium grounding line between the West Antarctic inland ice-sheet and the Ross ice shelf. Nature 283, 651–654 (1980)

    ADS  Google Scholar 

  41. Gomez, N., Mitrovica, J. X., Huybers, P. & Clark, P. U. Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nature Geosci. 3, 850–853 (2010)

    ADS  CAS  Google Scholar 

  42. Gomez, N., Pollard, D., Mitrovica, J. X., Huybers, P. & Clark, P. U. Evolution of a coupled marine ice sheet-sea level model. J. Geophys. Res. 117, F01013 (2012)

    ADS  Google Scholar 

  43. Das, S. B. et al. Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science 320, 778–781 (2008)

    ADS  CAS  PubMed  Google Scholar 

  44. Schoof, C. Ice sheet acceleration driven by melt supply variability. Nature 468, 803–806 (2010). Shows the important role of the ice sheet–ice shelf transition zone in controlling marine ice-sheet dynamics (in particular, stability/instability).

    ADS  CAS  PubMed  Google Scholar 

  45. Sundal, A. et al. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469, 521–524 (2011)

    ADS  CAS  PubMed  Google Scholar 

  46. Bartholomew, I. et al. Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater drainage: implications for the relationship between subglacial drainage system behavior and ice velocity. J. Geophys. Res. 117, F03002 (2012)

    ADS  Google Scholar 

  47. Amundson, J. & Truffer, M. A unifying framework for iceberg-calving models. J. Glaciol. 56, 822–830 (2010)

    ADS  Google Scholar 

  48. Hindmarsh, R. C. A. An observationally validated theory of viscous flow dynamics at the ice-shelf calving front. J. Glaciol. 58, 375–387 (2012)

    ADS  Google Scholar 

  49. Bassis, J. N. The statistical physics of iceberg calving and the emergence of universal calving laws. J. Glaciol. 57, 3–16 (2011)

    ADS  Google Scholar 

  50. Levermann, A. et al. Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. Cryosphere 6, 273–286 (2012)

    ADS  Google Scholar 

  51. Benn, D. I., Warren, C. R. & Mottram, R. H. Calving processes and the dynamics of calving glaciers. Earth Sci. Rev. 82, 143–179 (2007)

    ADS  Google Scholar 

  52. Nick, F. M., Vieli, A., Howat, I. M. & Joughin, I. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geosci. 2, 110–114 (2009)

    ADS  CAS  Google Scholar 

  53. Goelzer, H. et al. Millennial total sea-level commitments projected with the Earth system model of intermediate complexity LOVECLIM. Environ. Res. Lett. 7, 045401 (2012)

    ADS  Google Scholar 

  54. Nghiem, S. V. et al. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 39, L20502 (2012). Key paper documenting this large-scale Greenland melt event that was unprecedented in the modern satellite record.

    ADS  Google Scholar 

  55. Screen, J. A., Deser, C. & Simmonds, I. Local and remote controls on observed Arctic warming. Geophys. Res. Lett. 39, L10709 (2011). Provides strong observational and model evidence of symptoms and causes of the recent amplified Arctic warming.

    ADS  Google Scholar 

  56. Yoshimori, M. & Abe-Ouchi, A. Sources of spread in multimodel projections of the Greenland ice sheet surface mass balance. J. Clim. 25, 1157–1175 (2012)

    ADS  Google Scholar 

  57. Harper, N., Humphrey, N. F., Pfeffer, W. T., Brown, J. & Fettweis, X. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature 491, 240–243 (2012)

    ADS  CAS  PubMed  Google Scholar 

  58. Fettweis, X. et al. Estimating Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7, 469–489 (2013)

    ADS  Google Scholar 

  59. Price, S. F., Payne, A. J., Howat, I. M. & Smith, B. E. Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl Acad. Sci. USA 108, 8978–8983 (2011)

    ADS  CAS  PubMed  Google Scholar 

  60. Nick, F. M. et al. Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 497, 235–238 (2013)

    ADS  CAS  PubMed  Google Scholar 

  61. Goelzer, H. et al. Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol. (in the press)

  62. Bindschadler, R. A. et al. Ice sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J. Glaciol. 59, 195–224 (2013)

    ADS  Google Scholar 

  63. Arneborg, L., Wåhlin, A. K., Björk, G., Liljebladh, B. & Orsi, A. H. Persistent inflow of warm water onto the central Amundsen shelf. Nature Geosci. 5, 876–880 (2012)

    ADS  CAS  Google Scholar 

  64. Bengtsson, L., Koumoutsaris, S. & Hodges, K. Large-scale surface mass balance of ice sheets from a comprehensive atmospheric model. Surv. Geophys. 32, 459–474 (2011)

    ADS  Google Scholar 

  65. Winkelmann, R., Levermann, A., Martin, M. A. & Frieler, K. Increased future ice discharge from Antarctica owing to higher snowfall. Nature 492, 239–242 (2012)

    ADS  CAS  PubMed  Google Scholar 

  66. Little, C., Oppenheimer, M. & Urban, N. M. Upper bounds on twenty-first-century Antarctic ice loss assessed using a probabilistic framework. Nature Clim. Change http://dx.doi.org/10.1038/nclimate1845 (published online, 17 March 2013)

  67. Church, J. A. et al. Revisiting the Earth's sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011). A good and recent (though the numbers are already outdated in many cases) review of all contributions to SLR.

    ADS  Google Scholar 

  68. Hock, R., de Woul, M., Radić, V. & Dyurgerov, M. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett. 36, L07501 (2009)

    ADS  Google Scholar 

  69. Dyurgerov, M. B. Reanalysis of glacier changes: from the IGY to the IPY, 1960–2008. Data Glaciol. Studies 108, 5–116 (2010)

    Google Scholar 

  70. Cogley, J. G. Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann. Glaciol. 50, 96–100 (2009)

    ADS  Google Scholar 

  71. Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012)

    ADS  CAS  PubMed  Google Scholar 

  72. Cogley, J. G. in The Future of the World’s Climate 2nd edn (eds Henderson-Sellers, A. & McGuffie, K. ) 197–222 (Elsevier, 2012)

  73. Arendt, A. et al. Randolph Glacier Inventory: A Dataset of Global Glacier Outlines Version 2.0 (GLIMS Technical Report, Global Land Ice Measurements from Space, Boulder, 2012); available at http://www.glims.org/RGI/

  74. Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013). Presents a consensus estimate of the contributions of glaciers and ice caps to sea-level rise that reconciles the disparate estimates previously available from the different techniques.

    ADS  CAS  PubMed  Google Scholar 

  75. Meehl, G. A. et al. Relative outcomes of climate change mitigation related to global temperature versus sea level rise. Nature Clim. Change 2, 576–580 (2012)

    ADS  Google Scholar 

  76. Gouretski, V. & Koltermann, K. P. How much is the ocean really warming? Geophys. Res. Lett. 34, L01610 (2007)

    ADS  Google Scholar 

  77. Domingues, C. M. et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1093 (2008)

    ADS  CAS  PubMed  Google Scholar 

  78. von Schuckmann, K. & Le Traon, P.-Y. How well can we derive global ocean indicators from Argo data? Ocean Sci. Discuss 8, 999–1024 (2011)

    ADS  Google Scholar 

  79. Leuliette, E. W. & Willis, J. K. Balancing the sea level budget. Oceanography (Wash. DC) 24, 122–129 (2011)

    Google Scholar 

  80. Roemmich, D. & Gilson, J. The global ocean imprint of ENSO. Geophys. Res. Lett. 38, L13606 (2011)

    ADS  Google Scholar 

  81. Wada, Y. et al. Past and future contribution of global groundwater depletion to sea-level rise. Geophys. Res. Lett. 39, L09402 (2012)

    ADS  Google Scholar 

  82. Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nature Geosci. 5, 389–392 (2012)

    ADS  CAS  Google Scholar 

  83. Konikow, L. F. Overestimated water storage. Nature Geosci. 6, 3–4 (2012)

    ADS  Google Scholar 

  84. Remy, F., Flament, T., Blarel, F. & Benveniste, J. Radar altimetry measurements over Antarctic ice sheet: a focus on antenna polarization and change in backscatter problems. Adv. Space Res. 50, 998–1006 (2012)

    ADS  Google Scholar 

  85. Nicholls, R. J. et al. Sea-level rise and its possible impacts given a ‘beyond 4°C world’ in the twenty-first century. Proc. R. Soc. Lond. A 369, 161–181 (2011)

    ADS  Google Scholar 

  86. Joughin, I., Smith, B., Howat, I., Scambos, T. & Moon, T. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol. 56, 415–430 (2010)

    ADS  Google Scholar 

  87. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010)

    ADS  Google Scholar 

  88. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012)

    ADS  Google Scholar 

  89. Harig, C. & Simons, F. J. Mapping Greenland’s mass loss in space and time. Proc. Natl Acad. Sci. USA 109, 19934–19937 (2012)

    ADS  CAS  PubMed  Google Scholar 

  90. Ewert, H., Groh, A. & Dietrich, R. Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J. Geodyn. 59–60, 111–123 (2012)

    Google Scholar 

  91. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010)

    ADS  CAS  PubMed  Google Scholar 

  92. Farrell, W. E. & Clark, J. A. On postglacial sea level. Geophys. J. R. Astron. Soc. 46, 647–667 (1976)

    Google Scholar 

  93. Kendall, R. A., Mitrovica, J. X. & Milne, G. A. On post-glacial sea level — II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005)

    ADS  Google Scholar 

  94. Wahr, J., Wingham, D. & Bentley, C. A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. J. Geophys. Res. 105, 16279–16294 (2000)

    ADS  Google Scholar 

  95. Simpson, M. J. R., Wake, L., Milne, G. A. & Huybrechts, P. The influence of decadal- to millennial-scale ice mass changes on present-day vertical land motion in Greenland: Implications for the interpretation of GPS observations. J. Geophys. Res. 116, B02406 (2011)

    ADS  Google Scholar 

  96. Dietrich, R. et al. Rapid crustal uplift in Patagonia due to enhanced ice loss. Earth Planet. Sci. Lett. 289, 22–29 (2010)

    ADS  CAS  Google Scholar 

  97. Sato, T. et al. Reevaluation of the viscoelastic and elastic responses to the past and present-day ice changes in Southeast Alaska. Tectonophysics 511, 79–88 (2011)

    ADS  Google Scholar 

  98. Morelli, A. & Danesi, S. Seismological imaging of the Antarctic continental lithosphere: a review. Global Planet. Change 42, 155–165 (2004)

    ADS  Google Scholar 

  99. Tarasov, L., Dyke, A. S., Neal, R. M. & Peltier, W. R. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. 315–316, 30–40 (2012)

    ADS  Google Scholar 

  100. Gudmundsson, G. H. et al. The stability of grounding lines on retrograde slopes. Cryosphere 6, 1497–1505 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

The work presented here is based on the Ice-Sheet Mass Balance and Sea Level (ISMASS) workshop that was held in Portland, Oregon, USA, on 14 July 2012. This workshop was jointly organized by the Scientific Committee on Antarctic Research (SCAR), the International Arctic Science Committee (IASC) and the Word Climate Research Programme (WCRP), and was co-sponsored by the International Council for Science (ICSU), SCAR, IASC, WCRP, the International Glaciological Society (IGS) and the International Association of Cryospheric Sciences (IACS), with support from Climate and Cryosphere (CliC) and the Association of Polar Early Career Scientists (APECS).

Author information

Authors and Affiliations

Authors

Contributions

E.H. coordinated the study, E.H., F.J.N. and F.P. led the writing, and all authors contributed to the writing and discussion of ideas.

Corresponding author

Correspondence to Edward Hanna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanna, E., Navarro, F., Pattyn, F. et al. Ice-sheet mass balance and climate change. Nature 498, 51–59 (2013). https://doi.org/10.1038/nature12238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12238

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing