Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Making sense of palaeoclimate sensitivity

Subjects

An Erratum to this article was published on 16 January 2013

This article has been updated

Abstract

Many palaeoclimate studies have quantified pre-anthropogenic climate change to calculate climate sensitivity (equilibrium temperature change in response to radiative forcing change), but a lack of consistent methodologies produces a wide range of estimates and hinders comparability of results. Here we present a stricter approach, to improve intercomparison of palaeoclimate sensitivity estimates in a manner compatible with equilibrium projections for future climate change. Over the past 65 million years, this reveals a climate sensitivity (in K W−1 m2) of 0.3–1.9 or 0.6–1.3 at 95% or 68% probability, respectively. The latter implies a warming of 2.2–4.8 K per doubling of atmospheric CO2, which agrees with IPCC estimates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical timescales of different feedbacks relevant to equilibrium climate sensitivity, as discussed in this work.
Figure 2: Illustration of variability of climate sensitivity using a calculation of S [CO2,LI] , as defined in this work, for the past 800 kyr.
Figure 3: Evaluation of results from Tables 1 and 2 .
Figure 4: Equilibrium response of the global temperature as a function of CO 2 concentrations, based on three different approaches.

Similar content being viewed by others

Change history

  • 16 January 2013

    Nature 491, 683–691 (2012); doi:10.1038/nature11574 The surname of author V. Masson-Delmotte was misspelled as Masson-Demotte. In Table 1 of this Perspective, the ‘Source’ for ‘Label in Fig. 3’ entry 13 should be ref. 61 (not ref. 65). In addition, the x-axis labels of Fig. 3c were misplaced. Figure1 shows the corrected panel and the original Perspective has been corrected online.

References

  1. Solomon, S., et al., eds. Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, 2007)

  2. Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geosci. 1, 735–743 (2008). Presents a synthesis of equilibrium climate sensitivity estimates and discusses challenges for constraining its upper limit.

    Article  ADS  CAS  Google Scholar 

  3. Houghton, J. T., et al., eds. Climate Change 2001: The Scientific Basis (Cambridge Univ. Press, 2001)

  4. Roe, G. H. Feedbacks, timescales and seeing red. Annu. Rev. Earth Planet. Sci. 37, 93–115 (2009)

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  5. Dufresne, J.-L. & Bony, S. An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J. Clim. 21, 5135–5144 (2008). Presents a compilation of results of 12 GCMs used in IPCC-AR4, on the contribution of different fast feedbacks to both equilibrium and transient temperature change.

    Article  ADS  Google Scholar 

  6. Köhler, P. et al. What caused Earth’s temperature variations during the last 800,000 years? Data-based evidences on radiative forcing and constraints on climate sensitivity. Quat. Sci. Rev. 29, 129–145 (2010). Presents a data compilation on radiative forcing over the past 800 kyr, which forms the backbone of our late Pleistocene examples in Table 2 and in Supplementary Information.

    Article  ADS  Google Scholar 

  7. Roe, G. H. & Baker, M. B. Why is climate sensitivity so unpredictable? Science 318, 629–632 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Baker, M. B. & Roe, G. H. The shape of things to come: why is climate change so predictable? J. Clim. 22, 4574–4589 (2009)

    Article  ADS  Google Scholar 

  9. Hannart, A., Dufresne, J.-L. & Naveau, P. Why climate sensitivity may not be so unpredictable. Geophys. Res. Lett. 36, L16707 (2009)

    Article  ADS  Google Scholar 

  10. Zaliapin, I. & Ghil, M. Another look at climate sensitivity. Nonlinear Process. Geophys. 17, 113–122 (2010)

    Article  ADS  Google Scholar 

  11. Colman, R. & McAvaney, B. Climate feedbacks under a very broad range of forcing. Geophys. Res. Lett. 36, L01702 (2009)

    Article  ADS  Google Scholar 

  12. Hargreaves, J. C., Abe-Ouchi, A. & Annan, J. D. Linking glacial and future climates through an ensemble of GCM simulations. Clim. Past 3, 77–87 (2007)

    Article  Google Scholar 

  13. Lunt, D. J. et al. On the causes of mid-Pliocene warmth and polar amplification. Earth Planet. Sci. Lett. 321–322, 128–138 (2012)

    Article  ADS  CAS  Google Scholar 

  14. Haywood, A. M. et al. Are there pre-Quaternary geological analogues for a future greenhouse warming? Phil. Trans. R. Soc. A 369, 933–956 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Edwards, T. L., Crucifix, M. & Harrison, S. P. Using the past to constrain the future: how the palaeorecord can improve estimates of global warming. Prog. Phys. Geogr. 31, 481–500 (2007)

    Article  Google Scholar 

  16. Crucifix, M. Does the Last Glacial Maximum constrain climate sensitivity? Geophys. Res. Lett. 33, L18701 (2006). Presents first key evidence on the state-dependence of climate sensitivity.

    Article  ADS  Google Scholar 

  17. Laîné, A., Kageyama, M., Braconnot, P. & Alkama, R. Impact of greenhouse gas concentration changes on the surface energetics in the IPSL-CM4 model: regional warming patterns, land/sea warming ratio, glacial/interglacial differences. J. Clim. 22, 4621–4635 (2009)

    Article  ADS  Google Scholar 

  18. Otto-Bliesner, B. L. Status of CCSM4 Paleo CMIP5 Climate Simulations. http://www.cesm.ucar.edu/events/ws.2011/Presentations/Paleo/bette.pdf

  19. Held, I. M. et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Clim. 23, 2418–2427 (2010)

    Article  ADS  Google Scholar 

  20. Joos, F. & Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl Acad. Sci. USA 105, 1425–1430 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Köhler, P., Knorr, G., Buiron, D., Lourantou, A. & Chapellaz, J. Abrupt rise in atmospheric CO2 at the onset of the Bølling/Allerød: in-situ ice core data versus true atmospheric signals. Clim. Past 7, 473–486 (2011)

    Article  Google Scholar 

  22. Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Charney, J. G. et al. Carbon Dioxide and Climate: A Scientific Assessment (National Academy of Sciences, 1979)

  24. Knutti, R. & Tomassini, L. Constraints on the transient climate response from observed global temperature and ocean heat uptake. Geophys. Res. Lett. 35, L09701 (2008)

    ADS  Google Scholar 

  25. Gregory, J. M. & Forster, P. M. Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res. 113, D23105 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Soden, B. J. & Held, I. M. An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Clim. 19, 3354–3360 (2006)

    Article  ADS  Google Scholar 

  27. Huber, M., Mahlstein, I., Wild, M., Fasullo, J. & Knutti, R. Constraints on climate sensitivity from radiation patterns in climate models. J. Clim. 24, 1034–1052 (2011)

    Article  ADS  Google Scholar 

  28. Huybers, P. Compensation between model feedbacks and curtailment of climate sensitivity. J. Clim. 23, 3009–3018 (2010)

    Article  ADS  Google Scholar 

  29. Lemoine, D. M. Climate sensitivity distributions dependence on the possibility that models share biases. J. Clim. 23, 4395–4415 (2010)

    Article  ADS  Google Scholar 

  30. Hansen, J. Sato, M. Kharecha, P. & von Schuckmann, K. Earth’s energy imbalance and implications. Atmos. Chem. Phys. 11, 13421–13449 (2011)

  31. Gregory, J. M. et al. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 31, L03205 (2004)

    ADS  Google Scholar 

  32. Lambert, F. et al. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616–619 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Winckler, G., Anderson, R. F., Fleisher, M. Q., McGee, D. & Mahowald, N. Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica. Science 320, 93–96 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Roberts, A. P., Rohling, E. J., Grant, K. M., Larrasoaña, J. C. & Liu, Q. Atmospheric dust variability from major global source regions over the last 500,000 years. Quat. Sci. Rev. 30, 3537–3541 (2011)

    Article  ADS  Google Scholar 

  35. Ruth, U., Wagenbach, D., Steffensen, J. P. & Bigler, M. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. J. Geophys. Res.. 108, 4098, http://dx.doi.org/10.1029/2002JD002376 (2003)

    Article  CAS  Google Scholar 

  36. Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317–318, 8–19 (2012)

    Article  ADS  CAS  Google Scholar 

  37. Kohfeld, K. E. & Harrison, S. P. DIRTMAP: the geological record of dust. Earth Sci. Rev. 54, 81–114 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Mahowald, N., Albani, S., Engelstaedter, S., Winckler, G. & Goman, M. Model insight into glacial-interglacial paleodust records. Quat. Sci. Rev. 30, 832–854 (2011)

    Article  ADS  Google Scholar 

  39. Rohling, E. J., Medina-Elizalde, M., Shepherd, J. G., Siddall, M. & Stanford, J. D. Sea surface and high-latitude temperature sensitivity to radiative forcing of climate over several glacial cycles. J. Clim. 25, 1635–1656 (2012)

    Article  ADS  Google Scholar 

  40. Gray, L. J. et al. Solar influences on climate. Rev. Geophys. 48, RG4001 (2010)

    Article  ADS  Google Scholar 

  41. Milankovitch, M. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem (Special Publication 133, Mathematics and Natural Sciences Section, Royal Serbian Academy, Belgrade, 1941)

    Google Scholar 

  42. Berger, A. Support for the astronomical theory of climatic change. Nature 269, 44–45 (1977)

    Article  ADS  Google Scholar 

  43. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004)

    Article  ADS  Google Scholar 

  44. Lunt, D. J. et al. Earth system sensitivity inferred from Pliocene modelling and data. Nature Geosci. 3, 60–64 (2010). Presents a definition of Earth system sensitivity that includes both fast and slow processes, and its application to the Pliocene.

    Article  ADS  CAS  Google Scholar 

  45. Gregory, J. & Webb, M. Tropospheric adjustment induces a cloud component in CO2 forcing. J. Clim. 21, 58–71 (2008)

    Article  ADS  Google Scholar 

  46. Lüthi, D. et al. High-resolution CO2 concentration record 650,000−800,000 years before present. Nature 453, 379–382 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Schilt, A. et al. Glacial-interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quat. Sci. Rev. 29, 182–192 (2010)

    Article  ADS  Google Scholar 

  49. Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002)

    Article  ADS  Google Scholar 

  50. Rohling, E. J. et al. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geosci. 2, 500–504 (2009)

    Article  ADS  CAS  Google Scholar 

  51. Bintanja, R., van de Wal, R. & Oerlemans, J. Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437, 125–128 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Hansen, J. et al. Target atmospheric CO2: where should humanity aim? Open Atmos. Sci. J. 2, 217–231 (2008)

    Article  ADS  CAS  Google Scholar 

  53. Imbrie, J. & Imbrie, J. Z. Modeling the climatic response to orbital variations. Science 207, 943–953 (1980)

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Huybers, P. & Denton, G. H. Antarctic temperature at orbital timescales controlled by local summer duration. Nature Geosci. 1, 787–792 (2008)

    Article  ADS  CAS  Google Scholar 

  55. Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508–511 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Beerling, D. J. & Royer, D. L. Fossil plants as indicators of the Phanerozoic global carbon cycle. Annu. Rev. Earth Planet. Sci. 30, 527–556 (2002)

    Article  ADS  CAS  Google Scholar 

  57. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. F. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324, 1551–1554 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Lowenstein, T. K. & Demicco, R. V. Elevated Eocene atmospheric CO2 and its subsequent decline. Science 313, 1928 (2006)

    Article  CAS  PubMed  Google Scholar 

  60. Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nature Geosci. 4, 418–420 (2011)

    Article  ADS  CAS  Google Scholar 

  61. van de Wal, R. S. W., de Boer, B., Lourens, L. J., Köhler, P. & Bintanja, R. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years. Clim. Past 7, 1459–1469 (2011). Compiles CO 2 data from a variety of approaches over the past 20 million years, and condenses these into one time series.

    Article  Google Scholar 

  62. Beerling, D. J., Fox, A., Stevenson, D. S. & Valdes, P. J. Enhanced chemistry-climate feedbacks in past greenhouse worlds. Proc. Natl Acad. Sci. USA 108, 9770–9775 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. de Boer, B., van de Wal, R. S. W., Lourens, L. J. & Bintanja, R. Transient nature of the Earth’s climate and the implications for the interpretation of benthic δ18O records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335–336, 4–11 (2011)

    Google Scholar 

  64. Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J. Geophys. Res. 116, C12023 (2011)

    Article  ADS  CAS  Google Scholar 

  65. Gasson, E. et al. Exploring uncertainties in the relationship between temperature, ice volume and sea level over the past 50 million years. Rev. Geophys. 50, RG1005 (2012)

    Article  ADS  Google Scholar 

  66. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Miller, K. G., Wright, J. D. & Browning, J. V. Visions of ice sheets in a greenhouse world. Mar. Geol. 217, 215–231 (2005)

    Article  ADS  CAS  Google Scholar 

  68. Sluijs, A. et al. Eustatic variations during the Paleocene-Eocene greenhouse world. Paleoceanography 23, PA4216 (2008)

    ADS  Google Scholar 

  69. Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Lourens, L. J. et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083–1087 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nature Geosci. 2, 576–580 (2009)

    Article  ADS  CAS  Google Scholar 

  73. Huber, M. & Caballero, R. The early Eocene equable climate problem revisited. Clim. Past 7, 603–633 (2011)

    Article  Google Scholar 

  74. Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. & Le Treut, H. The ice-core record: climate sensitivity and future greenhouse warming. Nature 347, 139–145 (1990)

    Article  ADS  CAS  Google Scholar 

  75. Masson-Delmotte, V. et al. Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim. Dyn. 26, 513–529 (2006)

    Article  Google Scholar 

  76. Lea, D. The 100000-yr cycle in tropical SST, greenhouse gas forcing, and climate sensitivity. J. Clim. 17, 2170–2179 (2004)

    Article  ADS  Google Scholar 

  77. Hansen, J. et al. Climate change and trace gases. Phil. Trans. R. Soc. Lond. A 365, 1925–1954 (2007)

    Article  ADS  CAS  Google Scholar 

  78. Bijl, P. K. et al. Transient Middle Eocene atmospheric CO2 and temperature variations. Science 330, 819–821 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Schmittner, A. et al. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science 334, 1385–1388 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Rohling, E. J. Progress in palaeosalinity: overview and presentation of a new approach. Paleoceanography 22, PA3215 (2007)

    Article  ADS  Google Scholar 

  81. MARGO project members. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geosci. 2, 127–132 (2009)

  82. Schneider von Deimling, T., Ganopolski, A., Held, H. & Rahmstorf, S. How cold was the Last Glacial Maximum? Geophys. Res. Lett. 33, L14709 (2006)

    Article  ADS  CAS  Google Scholar 

  83. Ballantyne, A. P., Lavine, M., Crowley, T. J., Liu, J. & Baker, P. B. Meta-analysis of tropical surface temperatures during the Last Glacial Maximum. Geophys. Res. Lett. 32, L05712 (2005)

    Article  ADS  Google Scholar 

  84. Hansen, J. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. & Takahashi, T. ) 130–163 (Geophysical Monographs 29, American Geophysical Union, 1984)

  85. Hansen, J. E. & Sato, M. in Climate Change: Inferences from Paleoclimate and Regional Aspects (eds Berger, A., Mesinger, F. & Šijački, D. ) 21–48 (Springer, 2012)

    Book  Google Scholar 

  86. Hoffert, M. I. & Covey, C. Deriving global climate sensitivity from palaeoclimate reconstructions. Nature 360, 573–576 (1992)

    Article  ADS  Google Scholar 

  87. Pagani, M., Liu, Z., LaRiviere, J. & Ravelo, A. C. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nature Geosci. 3, 27–30 (2010)

    Article  ADS  CAS  Google Scholar 

  88. Covey, C., Sloan, L. C. & Hoffert, M. I. Paleoclimate data constraints on climate sensitivity: the paleocalibration method. Clim. Change 32, 165–184 (1996)

    Article  ADS  Google Scholar 

  89. Zachos, J. C., Stott, L. D. & Lohmann, K. C. Evolution of early Cenozoic marine temperatures. Paleoceanography 9, 353–387 (1994)

    Article  ADS  Google Scholar 

  90. Sloan, L. C. & Barron, E. J. A comparison of Eocene climate model results to quantified paleoclimatic interpretations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 183–202 (1992)

    Article  Google Scholar 

  91. Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991)

    Article  ADS  CAS  Google Scholar 

  92. Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6, 185–198 (1992)

    Article  ADS  CAS  Google Scholar 

  93. Cerling, T. E. Carbon dioxide in the atmosphere; evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci. 291, 377–400 (1991)

    Article  ADS  CAS  Google Scholar 

  94. Royer, D. L., Pagani, M. & Beerling, D. J. Geobiological constraints on Earth system sensitivity to CO2 during the Cretaceous and Cenozoic. Geobiology 10, 298–310 (2012)

    Article  CAS  PubMed  Google Scholar 

  95. Panchuk, K., Ridgwell, A. & Kump, L. R. Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: a model-data comparison. Geology 36, 315–318 (2008)

    Article  ADS  CAS  Google Scholar 

  96. Borzenkova, I. I. Determination of global climate sensitivity to the gas composition of the atmosphere from paleoclimatic data. Izv. Atmos. Ocean. Phys. 39, 197–202 (2003)

    Google Scholar 

  97. Park, J. & Royer, D. L. Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity. Am. J. Sci. 311, 1–26 (2011)

    Article  ADS  CAS  Google Scholar 

  98. Schmidt, G. A. Climate sensitivity — how sensitive is Earth’s climate to CO2; past. PAGES News 20, 11 (2012)

    Article  Google Scholar 

  99. Wunsch, C. & Heimbach, P. How long to oceanic tracer and proxy equilibrium? Quat. Sci. Rev. 27, 637–651 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This Perspective arose from the first PALAEOSENS workshop in March 2011. We thank the Royal Netherlands Academy of Arts and Sciences (KNAW) for funding and hosting this workshop in Amsterdam, PAGES for their support, and J. Gregory for discussions. This study was supported by the UK-NERC consortium iGlass (NE/I009906/1), and 2012 Australian Laureate Fellowship FL120100050. D.J.B., E.J.R. and P.V. were supported by Royal Society Wolfson Research Merit Awards. A.S. thanks the European Research Council for ERC starting grant 259627, and M.H. acknowledges NSF P2C2 grant 0902882. Some of the work was supported by grant 243908 ‘Past4Future’ of the EU’s seventh framework programme; this is Past4Future contribution number 30.

Author information

Authors and Affiliations

Consortia

Contributions

E.J.R., A.S. and H.A.D. initiated the PALAEOSENS workshop, and led the drafting of this study together with P.K., A.S.v.d.H. and R.S.W.v.d.W. The other authors contributed specialist insights, discussions and feedback.

Corresponding author

Correspondence to E. J. Rohling.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary References, Supplementary Table 1 and Supplementary Figures 1-6. (PDF 4926 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

PALAEOSENS Project Members. Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012). https://doi.org/10.1038/nature11574

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11574

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing