Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nematoda from the terrestrial deep subsurface of South Africa

Abstract

Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth’s crust and comprising a significant fraction of the global biosphere1,2,3,4. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9–3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000–12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General morphology of H. mephisto.
Figure 2: Bayesian-interference 50%-majority-rule consensus phylogenies based on small-subunit rDNA data.

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

Sequence information for H. mephisto has been deposited at GenBank under accession number GQ918144.

References

  1. Pedersen, K. The deep subterranean biosphere. Earth Sci. Rev. 34, 243–260 (1993)

    Article  CAS  ADS  Google Scholar 

  2. Onstott, T. C. et al. in Enigmatic Microorganisms and Life in Extreme Environments (ed. Seckbach, J. ) 487–500 (Kluwer, 1998)

  3. Amend, J. P. & Teske, A. Expanding frontiers in deep subsurface microbiology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 131–155 (2005)

    Article  Google Scholar 

  4. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  5. Sinclair, J. L. & Ghiorse, W. C. Distribution of aerobic bacteria, protozoa, algae and fungi in deep subsurface sediments. Geomicrobiol. J. 7, 15–31 (1989)

    Article  Google Scholar 

  6. Ekendahl, S., O’Neill, A., Thomsson, E. & Pedersen, K. Characterisation of yeasts isolated from deep igneous rock aquifers of the Fennoscandian shield. Microb. Ecol. 46, 416–428 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Heip, C., Vincx, M. & Vranken, G. The ecology of marine nematodes. Oceanogr. Mar. Biol. 23, 399–489 (1985)

    Google Scholar 

  8. Lambshead, P. in Nematode Morphology, Physiology and Ecology Vol. 1 (eds Chen, Z. X., Chen, S. Y. & Dickson, D. W. ) 438–492 (Tsinghua Univ. Press, 2004)

    Google Scholar 

  9. Föll, R. L. et al. Anaerobiosis in the nematode Caenorhabditis elegans . Comp. Biochem. Physiol. 124B, 269–280 (1999)

    Article  Google Scholar 

  10. Moser, D. P. et al. Desulfotomaculum spp. and Methanobacterium spp. dominate 4–5 km deep fault. Appl. Environ. Microbiol. 71, 8773–8783 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dorris, M., De Ley, P. & Blaxter, M. Molecular analysis of nematode diversity and the evolution of parasitism. Parasitol. Today 15, 188–193 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Holterman, M. et al. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 23, 1792–1800 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Lippmann, J. et al. Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochim. Cosmochim. Acta 67, 4597–4619 (2003)

    Article  CAS  ADS  Google Scholar 

  14. Onstott, T. C. et al. The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa. Geomicrobiol. J. 23, 369–414 (2006)

    Article  CAS  Google Scholar 

  15. Gihring, T. M. et al. The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol. J. 23, 415–430 (2006)

    Article  CAS  Google Scholar 

  16. Michel, R. L. in Isotopes in the Water Cycle: Past, Present and Future of a Developing Science (eds Aggarwal, P. K., Gat, J. R. & F roelich, K. F. O. ) Ch. 5, 53–66 (Springer, 2005)

    Book  Google Scholar 

  17. Wanger, G., Onstott, T. C. & Southam, G. Structural and chemical characterization of a natural fracture surface from 2.8 kilometers below land surface: biofilms in the deep subsurface. Geomicrobiol. J. 23, 443–452 (2006)

    Article  CAS  Google Scholar 

  18. Ferris, H., Venette, R. C. & Lau, S. S. Population energetics of bacterial-feeding nematodes: carbon and nitrogen budgets. Soil Biol. Biochem. 29, 1183–1194 (1997)

    Article  CAS  Google Scholar 

  19. van Voorhies, W. & Ward, S. Broad oxygen tolerance in the nematode Caenorhabditis elegans . J. Exp. Biol. 203, 2467–2478 (2000)

    CAS  PubMed  Google Scholar 

  20. Van Voorhies, W. A. & Ward, S. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc. Natl Acad. Sci. USA 96, 11399–11403 (1999)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  21. Phelps, T. J., Murphy, E. M., Pfiffner, S. M. & White, D. C. Comparison between geochemical and biological estimates of subsurface microbial activities. Microb. Ecol. 28, 335–349 (1994)

    Article  CAS  PubMed  Google Scholar 

  22. Ocana, A. Relationship between nematode species and the physico-chemical characteristics of spring waters. II. Temperature. Nematol. Mediterr. 19, 25–28 (1991)

    Google Scholar 

  23. Neher, D. A. & Powers, T. O. in Encyclopedia of Soils in the Environment Vol. 3 (eds Hillel, D. et al.) 1–5 (Academic, 2004)

    Google Scholar 

  24. Hoeppli, R. & Chu, H. J. Free-living nematodes from hot springs in China and Formosa. Hong Kong Nat. 1 (suppl.). 15–29 (1932)

    Google Scholar 

  25. Jana, B. B. The thermal springs of Bakreswar, India: physico-chemical conditions, flora and fauna. Hydrobiologia 41, 291–307 (1973)

    Article  CAS  Google Scholar 

  26. Engel, A. S. Observations on the biodiversity of sulfidic karst habitats. J. Cave Karst Stud. 69, 187–206 (2007)

    CAS  Google Scholar 

  27. Edwards, K. J., Bach, W. & McCollom, T. M. Geomicrobiology in oceanography: microbe–mineral interactions at and below the seafloor. Trends Microbiol. 13, 449–456 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Danovaro, R. et al. The first metazoa living in permanently anoxic conditions. BMC Biol. 8, 30–40 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yeates, G. W., Bongers, T., Goede, R. G. M., d, Freckman, D. W. & Georgieva, S. S. Feeding habits in nematode families and genera — an outline for soil ecologists. J. Nematol. 25, 315–331 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.B. is grateful to the University of Ghent for allowing a year-long sabbatical, and for grants from the FWO, BOF and UFS. We express our recognition of the support provided by Tau Tona gold mine (AngloGold Ashanti Limited), Driefontein gold mine (Gold Fields Limited), Beatrix gold mine (Gold Fields Limited), Zondereinde mine (Northern Platinum Ltd) and Star Diamonds mine (Petra Diamonds), and by the many people without whom this work would have been impossible. In particular, we are grateful to F. Rheeder, H. Möller, T. Lineque, A. Thwala, K. Sokhela, C. Rose, R. Fynn, B. Visser, O. Holovachev, T. Moens, M. Couvreur and A. Vierstraete. We are grateful to E. Botes and K. Albertyn of the University of the Free State for their contributions to the data analysis. T.C.O. acknowledges support from a National Science Foundation Continental Dynamics Program grant (EAR 0409605). E.v.H. acknowledges support from a BioPAD/UFS Metagenomics Platform grant.

Author information

Authors and Affiliations

Authors

Contributions

A.G.-M., D.L. and W.B. all contributed equally to this study. G.B., A.G.-M., D.L., A.B. and M.E. collected the filtered samples and the control samples and performed field analyses. G.B. carried out the enrichments. A.G.-M. performed microbial DNA extraction and 16S rRNA amplification, sequencing and tree construction. C.M. performed DNA analyses on filters of mining water. W.B. provided the nematode identification, their morphological description and their molecular analyses. T.C.O. modelled the geochemical, 3H and 14C data. G.B. wrote the paper with input from W.B., A.G.-M., T.C.O. and E.v.H.

Corresponding authors

Correspondence to G. Borgonie or T. C. Onstott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-9 with legends. (PDF 1927 kb)

Supplementary Information

This file contains Supplementary Tables 1-5, Supplementary Methods, a Supplementary Discussion and additional references. (PDF 895 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgonie, G., García-Moyano, A., Litthauer, D. et al. Nematoda from the terrestrial deep subsurface of South Africa. Nature 474, 79–82 (2011). https://doi.org/10.1038/nature09974

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09974

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing