Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr

Abstract

Searches for very-high-redshift galaxies over the past decade have yielded a large sample of more than 6,000 galaxies existing just 900–2,000 million years (Myr) after the Big Bang (redshifts 6 > z > 3; ref. 1). The Hubble Ultra Deep Field (HUDF09) data2,3 have yielded the first reliable detections of z ≈ 8 galaxies3,4,5,6,7,8,9 that, together with reports of a γ-ray burst at z ≈ 8.2 (refs 10, 11), constitute the earliest objects reliably reported to date. Observations of z ≈ 7–8 galaxies suggest substantial star formation at z > 9–10 (refs 12, 13). Here we use the full two-year HUDF09 data to conduct an ultra-deep search for z ≈ 10 galaxies in the heart of the reionization epoch, only 500 Myr after the Big Bang. Not only do we find one possible z ≈ 10 galaxy candidate, but we show that, regardless of source detections, the star formation rate density is much smaller (10%) at this time than it is just 200 Myr later at z ≈ 8. This demonstrates how rapid galaxy build-up was at z ≈ 10, as galaxies increased in both luminosity density and volume density from z ≈ 10 to z ≈ 8. The 100–200 Myr before z ≈ 10 is clearly a crucial phase in the assembly of the earliest galaxies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical and near-infrared images of the candidate z  ≈ 10 galaxy, UDFj-39546284, from the HUDF.
Figure 2: Predicted redshift distributions for our z  ≈ 8.5 and z  ≈ 10 galaxy candidates.
Figure 3: Ultraviolet luminosity functions at z  ≈ 4, z  ≈ 7 and constraints for z  ≈ 10.
Figure 4: The luminosity density and star formation rate density in the Universe over 13.2 Gyr.

References

  1. Bouwens, R. J., Illingworth, G. D., Franx, M. & Ford, H. UV luminosity functions at z4, 5, and 6 from the Hubble Ultra Deep Field and other deep Hubble Space Telescope ACS fields: evolution and star formation history. Astrophys. J. 670, 928–958 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Oesch, P. A. et al. z7 Galaxies in the HUDF: first epoch WFC3/IR results. Astrophys. J. 709, L16–L20 (2010)

    Article  ADS  Google Scholar 

  3. Bouwens, R. J. et al. Discovery of z8 galaxies in the HUDF from ultra-deep WFC3/IR observations. Astrophys. J. 709, L133–L137 (2010)

    Article  ADS  CAS  Google Scholar 

  4. McLure, R. et al. Galaxies at z6–9 from the WFC3/IR imaging of the HUDF. Mon. Not. R. Astron. Soc. 403, 960–983 (2010)

    Article  ADS  Google Scholar 

  5. Bunker, A. et al. The contribution of high redshift galaxies to cosmic reionization: new results from deep WFC3 Imaging of the Hubble Ultra Deep Field. Mon. Not. R. Astron. Soc. 409, 855–866 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Yan, H. et al. Galaxy formation in the reionization epoch as hinted by Wide Field Camera 3 observations of the Hubble Ultra Deep Field. Res. Astron. Astrophys. 10, 867–904 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Finkelstein, S. et al. On the stellar populations and evolution of star-forming galaxies at 6.3<z8.6. Astrophys. J. 719, 1250–1273 (2010)

    Article  ADS  Google Scholar 

  8. Robertson, N., Ellis, R. S., Dunlop, R. S., McLure, R. J. & Stark, D. P. Early star-forming galaxies and the reionization of the Universe. Nature 468, 49–55 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Bouwens, R. J. et al. UV luminosity functions from 113 z7 and z8 Lyman-break galaxies in the ultra-deep HUDF09 and wide-area ERS WFC3/IR observations, 2010. Astrophys. J. (submitted); preprint at 〈http://arxiv.org/abs/1006.4360〉 (2010)

  10. Tanvir, N. et al. A γ-ray burst at a redshift of z ≈ 8. Nature 461, 1254–1257 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Salvaterra, R. et al. GRB090423 at a redshift of z ≈ 8.1. Nature 461, 1258–1260 (2009)

    Article  ADS  CAS  Google Scholar 

  12. Labbé, I. et al. Ultradeep IRAC observations of sub-L* z7 and z8 galaxies in the HUDF: the contribution of low-luminosity galaxies to the stellar mass density and reionization. Astrophys. J. 708, L26–L31 (2010)

    Article  ADS  Google Scholar 

  13. González, V. et al. Stellar mass density and specific star formation rates of the Universe at z7. Astrophys. J. 713, 115–130 (2010)

    Article  ADS  Google Scholar 

  14. Lehnert, M. et al. Spectroscopic confirmation of a galaxy at z = 8.6. Nature 467, 940–942 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M. & Adelberger, K. L. Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts z > 3. Astrophys. J. 462, L17–L21 (1996)

    Article  ADS  Google Scholar 

  16. Vanzella, E. et al. Spectroscopic observations of Lyman break galaxies at redshifts 4, 5, and 6 in the Goods-South Field. Astrophys. J. 695, 1163–1182 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Popesso, P. et al. The great observatories origins deep survey. VLT/VIMOS spectroscopy in the GOODS-south field. Astron. Astrophys. 494, 443–460 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Steidel, C. C. et al. Lyman break galaxies at redshift z 3: survey description and full data set. Astrophys. J. 592, 728–754 (2003)

    Article  ADS  Google Scholar 

  19. Reddy, N. et al. A spectroscopic survey of redshift 1.4<z<3.0 galaxies in the GOODS-North Field: survey description, catalogs, and properties. Astrophys. J. 653, 1004–1026 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Trenti, M. & Stiavelli, M. Cosmic variance and its effect on the luminosity function determinations in deep high-z surveys. Astrophys. J. 676, 767–780 (2008)

    Article  ADS  Google Scholar 

  21. Bouwens, R. J., Broadhurst, T. J. & Silk, J. Cloning Hubble Deep Fields. I. A model-independent measurement of galaxy evolution. Astrophys. J. 506, 557–578 (1998)

    Article  ADS  Google Scholar 

  22. Bouwens, R. J., Illingworth, G. D., Franx, M. & Ford, H. z 7–10 galaxies in the HUDF and GOODS Fields: UV luminosity functions. Astrophys. J. 686, 230–250 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Fan, X. et al. Evolution of the ionizing background and the epoch of reionization from the spectra of z6 quasars. Astron. J. 123, 1247–1257 (2002)

    Article  ADS  Google Scholar 

  24. Komatsu, E. et al. Seven-Year Wilkinson Microwave Anisotropy Probe observations: cosmological interpretation. Astrophys. J. (in the press); preprint at 〈http://arXiv.org/abs/1001.4538〉 (2010)

  25. Bouwens, R. et al. UV-continuum slope and dust obscuration from z6 to z2: the star formation rate density at high redshift. Astrophys. J. 705, 936–961 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Beckwith, S. W. et al. The Hubble Ultra Deep Field. Astrophys. J. 132, 1729–1755 (2006)

    CAS  Google Scholar 

  27. Reddy, N. & Steidel, C. C. A steep faint-end slope of the UV luminosity function at z 2–3: implications for the global stellar mass density and star formation in low-mass halos. Astrophys. J. 692, 778–803 (2009)

    Article  ADS  CAS  Google Scholar 

  28. Yoshida, M. et al. Luminosity functions of Lyman break galaxies at z4 and z5 in the Subaru Deep Field. Astrophys. J. 653, 988–1003 (2006)

    ADS  CAS  Google Scholar 

  29. McLure, R., Cirasuolo, M., Dunlop, J. S., Foucaud, S. & Almaini, O. The luminosity function, halo masses, and stellar masses of luminous Lyman-break galaxies at 5&lt;z6. Mon. Not. R. Astron. Soc. 395, 2196–2209 (2009)

    Article  ADS  CAS  Google Scholar 

  30. Schiminovich, D. et al. The GALEX-VVDS measurement of the evolution of the far-ultraviolet luminosity density and the cosmic star formation rate. Astrophys. J. 619, L47–L50 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all those at NASA, STScI and throughout the community who have worked to make the Hubble Space Telescope the observatory that it is today, and we acknowledge the importance of the servicing missions and those who organised them. We acknowledge our program coordinator W. Januszewski for his care in helping to set up our program and observing configuration. We acknowledge support from NASA and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.J.B. carried out the most of the data analysis and calculations for this paper, and wrote most of the Supplementary Information; G.D.I. wrote most of the text in the Letter and iterated on the initial science results and content with R.J.B.; I.L., P.A.O., M.T., C.M.C., P.G.v.D., M.F., M.S. and L.B. provided significant feedback on the science content and on the drafts; I.L. and V.G. were involved with processing the Spitzer IRAC data; P.A.O. contributed to the data analysis; M.T. made the cosmic variance estimates; and D.M. was involved in data processing and pipeline generation for the WFC3/IR data.

Corresponding author

Correspondence to R. J. Bouwens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and Data, Supplementary Figures 1-10 with legends, Supplementary Tables 1-2 and additional references. (PDF 731 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouwens, R., Illingworth, G., Labbe, I. et al. A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr. Nature 469, 504–507 (2011). https://doi.org/10.1038/nature09717

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09717

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing