Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Real-time observation of valence electron motion

Abstract

The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10−15 s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump–probe measurement of the density matrix of valence electrons in atomic krypton ions1. We generate the ions with a controlled few-cycle laser field2 and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse3, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probing intra-atomic electron motion by attosecond absorption spectroscopy.
Figure 2: Transient absorption spectra of krypton ions.
Figure 3: Build-up of electronic coherence in Kr + produced by optical field ionization (theory).
Figure 4: Attosecond absorption spectroscopy reveals intra-atomic electron wave-packet motion in Kr+.
Figure 5: Reconstruction of valence-shell electron wave-packet motion.

Similar content being viewed by others

References

  1. Rohringer, N. & Santra, R. Multichannel coherence in strong-field ionization. Phys. Rev. A 79, 053402 (2009)

    Article  ADS  Google Scholar 

  2. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000)

    Article  CAS  Google Scholar 

  5. Schöffler, M. S. et al. Ultrafast probing of core hole localization in N2 . Science 320, 920–923 (2008)

    Article  ADS  Google Scholar 

  6. Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Niikura, H. et al. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2002)

    Article  ADS  Google Scholar 

  8. Niikura, H., Villeneuve, D. M. & Corkum, P. B. Mapping attosecond electron wave packet motion. Phys. Rev. Lett. 94, 083003 (2005)

    Article  ADS  Google Scholar 

  9. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Brabec, T. Strong Field Laser Physics (Springer, 2008)

    Google Scholar 

  15. Yudin, G. L. et al. Attosecond photoionization of coherently coupled electronic states. Phys. Rev. A 72, 051401 (2005)

    Article  ADS  Google Scholar 

  16. Pollard, W. T., Lee, S.-Y. & Mathies, R. A. Wave packet theory of dynamic absorption spectra in femtosecond pump-probe experiments. J. Chem. Phys. 92, 4012–4029 (1990)

    Article  ADS  CAS  Google Scholar 

  17. Mathies, R. A. et al. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science 240, 777–779 (1988)

    Article  ADS  CAS  Google Scholar 

  18. Loh, Z.-H. et al. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy. Phys. Rev. Lett. 98, 143601 (2007)

    Article  ADS  Google Scholar 

  19. Loh, Z.-H. & Leone, S. R. Ultrafast strong-field dissociative ionization dynamics of CH2Br2 probed by femtosecond soft X-ray transient absorption spectroscopy. J. Chem. Phys. 128, 204302 (2008)

    Article  ADS  Google Scholar 

  20. Southworth, S. H. et al. K-edge X-ray-absorption spectroscopy of laser-generated Kr+ and Kr2+ . Phys. Rev. A 76, 043421 (2007)

    Article  ADS  Google Scholar 

  21. Jurvansuu, M., Kivimäki, A. & Aksela, S. Inherent lifetime widths of Ar 2p−1, Kr 3d−1, Xe 3d−1, and Xe 4d−1 states. Phys. Rev. A 64, 012502 (2001)

    Article  ADS  Google Scholar 

  22. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Rottke, H., Ludwig, J. & Sandner, W. ‘Short’ pulse MPI of xenon: the 2P 1/2 ionization channel. J. Phys. B 29, 1479 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Gubbini, E. et al. Core relaxation in atomic ultrastrong laser field ionization. Phys. Rev. Lett. 94, 053602 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Young, L. et al. X-ray microprobe of orbital alignment in strong-field ionized atoms. Phys. Rev. Lett. 97, 083601 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Saloman, E. B. Energy levels and observed spectral lines of krypton, Kr I through Kr XXXVI. J. Phys. Chem. Ref. Data 36, 215–386 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Santra, R., Dunford, R. W. & Young, L. Spin-orbit effect on strong-field ionization of krypton. Phys. Rev. A 74, 043403 (2006)

    Article  ADS  Google Scholar 

  28. Jones, R. R. & Noordam, L. D. Electronic wavepackets. Adv. At. Mol. Opt. Phys. 38, 1–38 (1998)

    Article  ADS  Google Scholar 

  29. Bucksbaum, P. H. The future of attosecond spectroscopy. Science 317, 766–769 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Krausz, F. & Ivanov, M. Y. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank U. Kleineberg, M. Hofstetter and M. Fiess for invaluable contributions. This work was supported by the Max Planck Society, the Nobel Program of King Saud University and the DFG Cluster of Excellence: Munich Centre for Advanced Photonics (http://www.munich-photonics.de). E.G. acknowledges a Marie-Curie Reintegration grant (MERG-CT-2007-208643). A.W., S.Z. and M.F.K. acknowledge support by the Emmy Noether programme of the DFG. Z.-H.L., T.P. and S.R.L. acknowledge support from the Air Force Office of Scientific Research (FA9550-04-1-0242), the National Science Foundation (CHE-0742662 and EEC-0310717) and the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy (DE-AC02-05-CH11231). T.P. acknowledges support from the MPRG program of the MPG. R.S. is supported by the Office of Basic Energy Sciences, Office of Science, US Department of Energy (DE-AC02-06CH11357). Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory (DE-AC52-07NA27344). S.R.L. gratefully acknowledges appointment as a Miller Research Professor in the Miller Institute for Basic Research in Science.

Author information

Authors and Affiliations

Authors

Contributions

E.G., Z.-H.L. and A.W. conceived and designed the experiments; E.G., A.W. and Z.-H.L. performed the measurements; A.W., Z.-H.L., E.G., T.P., S.Z., A.M.A., M.F.K., S.R.L and F.K. evaluated, analysed and interpreted the experimental data; and R.S., N.R. and V.S.Y. performed the theoretical modelling. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Eleftherios Goulielmakis, Stephen R. Leone or Ferenc Krausz.

Supplementary information

Supplementary Information

This file contains Supplementary Data and a Reference. (PDF 219 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulielmakis, E., Loh, ZH., Wirth, A. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010). https://doi.org/10.1038/nature09212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09212

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing