Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

No climate paradox under the faint early Sun

Abstract

Environmental niches in which life first emerged and later evolved on the Earth have undergone dramatic changes in response to evolving tectonic/geochemical cycles and to biologic interventions1,2,3, as well as increases in the Sun’s luminosity of about 25 to 30 per cent over the Earth’s history4. It has been inferred that the greenhouse effect of atmospheric CO2 and/or CH4 compensated for the lower solar luminosity and dictated an Archaean climate in which liquid water was stable in the hydrosphere5,6,7,8. Here we demonstrate, however, that the mineralogy of Archaean sediments, particularly the ubiquitous presence of mixed-valence Fe(IIIII) oxides (magnetite) in banded iron formations9 is inconsistent with such high concentrations of greenhouse gases and the metabolic constraints of extant methanogens. Prompted by this, and the absence of geologic evidence for very high greenhouse-gas concentrations10,11,12,13, we hypothesize that a lower albedo on the Earth, owing to considerably less continental area and to the lack of biologically induced cloud condensation nuclei14, made an important contribution to moderating surface temperature in the Archaean eon. Our model calculations suggest that the lower albedo of the early Earth provided environmental conditions above the freezing point of water, thus alleviating the need for extreme greenhouse-gas concentrations to satisfy the faint early Sun paradox.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constraints on the partial pressures for CO 2 and H 2 in the atmosphere of the early Earth.
Figure 2: Climatic models for the Earth since 3.8 Gyr ago.

References

  1. Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms. Phil. Trans. R. Soc. B 361, 1819–1834 (2006)

    Article  CAS  Google Scholar 

  2. Sleep, N. H. & Bird, D. K. Niches of the pre-photosynthetic biosphere and geologic preservation of Earth’s earliest ecology. Geobiology 5, 101–117 (2007)

    Article  CAS  Google Scholar 

  3. Lowe, D. R. & Tice, M. M. Geologic evidence for Archean atmospheric and climatic evolution: fluctuating CO2, CH4, and O2, with an overriding tectonic control. Geology 32, 493–496 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981)

    Article  ADS  CAS  Google Scholar 

  5. Sagan, C. & Mullen, G. Earth and Mars—evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972)

    Article  ADS  CAS  Google Scholar 

  6. Kiehl, J. T. & Dickinson, R. E. A study of the radiative effects of enhanced atmospheric CO2 and CH4 on early Earth surface temperatures. J. Geophys. Res. 92, 2991–2998 (1987)

    Article  ADS  CAS  Google Scholar 

  7. Kasting, J. F. Earth’s early atmosphere. Science 259, 920–926 (1993)

    Article  ADS  CAS  Google Scholar 

  8. Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A. Revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Klein, C. & Beukes, N. in Proterozoic Crustal Evolution Vol. 10 Developments in Precambrian Geology (ed. Condie, K. C.) 383–418 (Elsevier, 1992)

    Book  Google Scholar 

  10. Rye, R., Kuo, P. H. & Holland, H. D. Atmospheric carbon-dioxide concentrations before 2.2-billion years ago. Nature 378, 603–605 (1995)

    Article  ADS  CAS  Google Scholar 

  11. Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. Planets 106, 1373–1399 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Hessler, A. M., Lowe, D. R., Jones, R. L. & Bird, D. K. A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428, 736–738 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Sheldon, N. D. Precambrian paleosols and atmospheric CO2 levels. Precambr. Res. 147, 148–155 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Kump, L. R. & Pollard, D. Amplification of cretaceous warmth by biological cloud feedbacks. Science 320, 195 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Rosing, M. T., Rose, N. M., Bridgwater, D. & Thomsen, H. S. Earliest part of Earth's stratigraphic record: a reappraisal of the >3.7 Ga Isua (Greenland) supracrustal sequence. Geology 24, 43–46 (1996)

    Article  ADS  Google Scholar 

  16. Peck, W. H., Valley, J. W., Wilde, S. A. & Graham, C. M. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high delta O-18 continental crust and oceans in the Early Archean. Geochim. Cosmochim. Acta 65, 4215–4229 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Catling, D. C., Zahnle, K. J. & McKay, C. P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Rossow, W. B., Henderson-sellers, A. & Weinreich, S. K. Cloud feedback—a stabilizing effect for the early Earth. Science 217, 1245–1247 (1982)

    Article  ADS  CAS  Google Scholar 

  19. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326, 655–661 (1987)

    Article  ADS  CAS  Google Scholar 

  20. Knauth, L. P. & Lowe, D. R. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull. 115, 566–580 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Tice, M. M. & Lowe, D. R. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549–552 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Sleep, N. H. & Hessler, A. M. Weathering of quartz as an Archean climatic indicator. Earth Planet. Sci. Lett. 241, 594–602 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Jaffres, J. B. D., Shields, G. A. & Wallmann, K. The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci. Rev. 83, 83–122 (2007)

    Article  ADS  Google Scholar 

  24. Kasting, J. F. et al. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet. Sci. Lett. 252, 82–93 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci. 298, 621–672 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Ohmoto, H., Watanabe, Y. & Kumazawa, K. Evidence from massive siderite beds for a CO2-rich atmosphere before 1.8 billion years ago. Nature 429, 395–399 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Hoehler, T. M. et al. Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems. Antonie Van Leeuwenhoek Int. J. Gen. Molec. Microbiol. 81, 575–585 (2002)

    Article  CAS  Google Scholar 

  28. Kral, T. A., Brink, K. M., Miller, S. L. & McKay, C. P. Hydrogen consumptions by methanogens on the early Earth. Origins Life Evol. B 28, 311–319 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Chapelle, F. H. et al. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315 (2002)

    Article  ADS  Google Scholar 

  30. Kasting, J. F., Pavlov, A. A. & Siefert, J. L. A coupled ecosystem-climate model for predicting the methane concentration in the archean atmosphere. Origins Life Evol. B 31, 271–285 (2001)

    Article  ADS  CAS  Google Scholar 

  31. Charecha, P., Kasting, J. & Seifert, J. A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005)

    Article  Google Scholar 

  32. Rosing, M. T. & Frei, R. U-rich Archaean sea-floor sediments from Greenland—indications of > 3700 Ma oxygenic photosynthesis. Earth Planet. Sci. Lett. 217, 237–244 (2004)

    Article  ADS  CAS  Google Scholar 

  33. Caballero, R. & Steder, M. CliMT: An object-oriented Climate Modelling and diagnostics Toolkit.http://maths.ucd.ie/~rca/climt/〉 (2008)

    Google Scholar 

  34. Johnson, J. W., Oelkers, E. H. & Helgeson, H. C. Supcrt92—a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1-bar to 5000-bar and 0-degrees-C to 1000-degrees-C. Comput. Geosci. 18, 899–947 (1992)

    Article  ADS  Google Scholar 

  35. Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A. & Freedman, R. Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11981–11990 (2000)

    Article  ADS  CAS  Google Scholar 

  36. Bjerrum, C. J. & Canfield, D. E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159–162 (2002)

    Article  ADS  CAS  Google Scholar 

  37. Hartmann, D. L. Global Physical Climatology (Academic Press, 1994)

    Google Scholar 

  38. Kump, L. R., Kasting, J. F. & Barley, M. E. Rise of atmospheric oxygen and the “upside-down” Archean mantle. Geochem. Geophys. Geosyst. 2, 2000GC000114 (2001)

    Article  Google Scholar 

  39. Wielicki, B. A. et al. Clouds and the Earth’s radiant energy system (CERES): an Earth observing system experiment. Bull. Am. Meteorol. Soc. 77, 853–868 (1996)

    Article  ADS  Google Scholar 

  40. Kiehl, J. T. & Trenberth, K. E. Earth’s annual global mean energy budget. Bull. Am. Meteorol. Soc. 78, 197–208 (1997)

    Article  ADS  Google Scholar 

  41. Caldeira, K. & Kasting, J. F. The life-span of the biosphere revisited. Nature 360, 721–723 (1992)

    Article  ADS  CAS  Google Scholar 

  42. Peixoto, J. P. & Ooort, A. H. Physics of Climate (American Institute of Physics, 1992)

    Book  Google Scholar 

  43. Armstrong, R. L. The persistent myth of crustal growth. Aust. J. Earth Sci. 38, 613–630 (1991)

    Article  ADS  Google Scholar 

  44. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001)

    Article  ADS  CAS  Google Scholar 

  45. Valley, J. W. et al. A cool early Earth. Geology 30, 351–254 (2002)

    Article  ADS  CAS  Google Scholar 

  46. Mclennan, S. M. & Taylor, S. R. Continental freeboard, sedimentation rates and growth of continental crust. Nature 306, 169–172 (1983)

    Article  ADS  Google Scholar 

  47. Collerson, K. D. & Kamber, B. S. Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science 283, 1519–1522 (1999)

    Article  ADS  CAS  Google Scholar 

  48. Nagler, T. F. & Kramers, J. D. Nd isotopic evolution of the upper mantle during the Precambrian: models, data and the uncertainty of both. Precambr. Res. 91, 233–252 (1998)

    Article  ADS  CAS  Google Scholar 

  49. Condie, K. C. Episodic continental growth models: afterthoughts and extensions. Tectonophysics 322, 153–162 (2000)

    Article  ADS  CAS  Google Scholar 

  50. Flament, N., Coltice, N. & Rey, P. F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008)

    Article  ADS  CAS  Google Scholar 

  51. Rey, P. F. & Coltice, N. Neoarchean lithospheric strengthening and the coupling of Earth's geochemical reservoirs. Geology 36, 635–638 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out at the Nordic Center for Earth Evolution funded by the Danish National Research Foundation and the research was supported by an Allan C. Cox Professorship to M.T.R. and endowment funds from the Department of Geological and Environmental Sciences from Stanford University to D.K.B., and NSF grants to N.H.S. We are grateful for comments from D. Lowe, D. Canfield, F. Selsis, P. Ditlevsen and the “Ice and climate group” of the Niels Bohr Institute. We thank R. Caballero and J. Bendtsen for comments on the radiation balance model. We thank J. Kasting, A. Lenardic and N. Sheldon for constructive reviews.

Author Contributions All authors have contributed to developing the ideas presented. M.T.R. and D.K.B. carried out the thermodynamic modelling, and C.J.B. carried out the radiative climate modelling, based on surface albedo change (M.T.R.) and low CCN (C.J.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minik T. Rosing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosing, M., Bird, D., Sleep, N. et al. No climate paradox under the faint early Sun. Nature 464, 744–747 (2010). https://doi.org/10.1038/nature08955

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08955

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing