Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Volcanic mesocyclones

Abstract

A strong volcanic plume consists of a vertical column of hot gases and dust topped with a horizontal ‘umbrella’1. The column rises, buoyed by entrained and heated ambient air, reaches the neutral-buoyancy level, then spreads radially to form the umbrella. In classical models of strong volcanic plumes, the plume is assumed to remain always axisymmetric and non-rotating. Here we show that the updraught of the rising column induces a hydrodynamic effect not addressed to date—a ‘volcanic mesocyclone’. This volcanic mesocyclone sets the entire plume rotating about its axis, as confirmed by an unprecedented analysis of satellite images from the 1991 eruption of Mount Pinatubo2,3,4. Destabilized by the rotation, the umbrella loses axial symmetry and becomes lobate in plan view, in accord with satellite records of recent eruptions on Mounts Pinatubo, Manam, Reventador, Okmok, Chaiten and Ruang. The volcanic mesocyclone spawns waterspouts5,6 or dust devils6,7,8, as seen in numerous eruptions, and groups the electric charges about the plume to form the ‘lightning sheath’ that was so prominent in the recent eruption of Mount Chaiten. The concept of a volcanic mesocyclone provides a unified explanation for a disparate set of poorly understood phenomena in strong volcanic plumes5,6,7,8,9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of Pinatubo’s umbrella (15 June 1991).
Figure 2: Diagrams to illustrate the formation of a volcanic mesocyclone starting from different sources of vorticity (not to scale).
Figure 3: Satellite images of lobate umbrellas.
Figure 4: Secondary signatures of a volcanic mesocyclone.

Similar content being viewed by others

References

  1. Sparks, R. S. J. et al. Volcanic Plumes (Wiley and Sons, 1997)

    Google Scholar 

  2. Holasek, R. E., Self, S. & Woods, A. W. Satellite observations and interpretations of the 1991 Mount Pinatubo eruption plumes. J. Geophys. Res. 101, 27635–27655 (1996)

    Article  ADS  Google Scholar 

  3. Oswalt, J. S., Nichols, W. & O’Hara, J. F. in Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines (eds Newhall, C. G. & Punongbayan, R. S.) 625–636 (Philippine Institute of Volcanology and Seismology and University of Washington Press, 1996)

    Google Scholar 

  4. Self, S., Zhao, J., Holasek, R. E., Torres, R. C. & King, A. in Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines (eds Newhall, C. G. & Punongbayan, R. S.) 1089–1115 (Philippine Institute of Volcanology and Seismology and University of Washington Press, 1996)

    Google Scholar 

  5. Tillard, S. A narrative of the eruption of a volcano in the sea off the island of St. Michael. Phil. Trans. R. Soc. Lond. B 102, 152–158 (1812)

    Article  ADS  Google Scholar 

  6. Thorarinsson, S. & Vonnegut, B. Whirlwinds produced by the eruption of Surtsey volcano. Bull. Am. Meteorol. Soc. 45, 440–444 (1964)

    Article  ADS  Google Scholar 

  7. Anderson, R. et al. Electricity in volcanic clouds: investigations show that lightning can result from charge-separation processes in a volcanic crater. Science 148, 1179–1189 (1965)

    Article  ADS  CAS  Google Scholar 

  8. Stothers, R. B. The great Tambora eruption in 1815 and its aftermath. Science 224, 1191–1198 (1984)

    Article  ADS  CAS  Google Scholar 

  9. Mather, T. A. & Harrison, R. G. Electrification of volcanic plumes. Surv. Geophys. 27, 387–432 (2006)

    Article  ADS  Google Scholar 

  10. Thomas, R. J. et al. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions. Science 315, 1097 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Klemp, J. B. Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech. 19, 369–402 (1987)

    Article  ADS  Google Scholar 

  12. Baines, P. G. & Sparks, R. S. J. Dynamics of giant volcanic ash clouds from supervolcanic eruptions. Geophys. Res. Lett. 32 L24808 10.1029/2005GL024597 (2005)

    Article  ADS  Google Scholar 

  13. Davis-Jones, R., Trapp, R. J. & Bluestein, H. B. in Severe Convective Storms Ch. 5 (ed. Doswell, C. A. III) 167–221 (Meteorological Monographs Vol. 28, American Meteorological Society, 2001)

    Book  Google Scholar 

  14. Emanuel, K. Atmospheric Convection (Oxford Univ. Press, 1994)

    Google Scholar 

  15. Griffiths, R. W. Gravity currents in rotating systems. Annu. Rev. Fluid Mech. 18, 59–89 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  16. Linden, P. F. in Rotating Fluids in Geophysical and Industrial Applications (ed. Hopfinger, E. J.) 99–123 (Springer, 1992)

    Book  Google Scholar 

  17. Tennekes, H. & Lumley, J. L. A First Course in Turbulence (MIT Press, 1972)

    MATH  Google Scholar 

  18. Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics Vol. 6, Fluid Mechanics (Elsevier Academic Press, 2000)

    Google Scholar 

  19. Gioia, G. & Chakraborty, P. Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Phys. Rev. Lett. 96, 044502 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Chakraborty, P., Gioia, G. & Kieffer, S. Volcan Reventador’s unusual umbrella. Geophys. Res. Lett. 33 L05313 10.1029/2005GL024915 (2006)

    Article  ADS  Google Scholar 

  21. Valentine, G. A. & Wohletz, K. H. Numerical models of plinian eruption columns and pyroclastic flows. J. Geophys. Res. 94, 1867–1887 (1989)

    Article  ADS  Google Scholar 

  22. Pedlosky, J. Geophysical Fluid Dynamics (Springer, 1979)

    Book  Google Scholar 

  23. Hoblitt, R. P. Was the 18 May 1980 lateral blast at Mt. St. Helens the product of two explosions? Phil. Trans. R. Soc. Lond. A 358, 1639–1661 (2000)

    Article  ADS  Google Scholar 

  24. Tupper, A., Oswalt, J. S. & Rosenfeld, D. Satellite and radar analysis of the volcanic-cumulonimbi at Mt Pinatubo, Philippines, 1991. J. Geophys. Res. 110 D09204 10.1029/2004JD005499 (2005)

    Article  ADS  Google Scholar 

  25. MacGorman, D. R. et al. The electrical structure of two supercell storms during STEPS. Mon. Weath. Rev. 133, 2583–2607 (2005)

    Article  ADS  Google Scholar 

  26. Wiens, K. C., Rutledge, S. A. & Tessendorf, S. A. The 29 June 2000 supercell observed during STEPS, part II: Lightning and charge structure. J. Atmos. Sci. 62, 4151–4177 (2005)

    Article  ADS  Google Scholar 

  27. Krehbiel, P. R. et al. GPS-based mapping system reveals lightning inside storms. Eos 81, 21–25 (2000)

    Article  ADS  Google Scholar 

  28. Payne, C. The Evolution of a Lightning Hole during the 29–30 May 2004 HP Supercell during TELEX. M.Sc. thesis, Univ. Oklahoma (2008)

    Google Scholar 

  29. Bruning, E. Charging Regions, Regions of Charge, and Storm Structure in a Partially Inverted Polarity Supercell Thunderstorm. Ph.D. thesis, Univ. Oklahoma (2008)

    Google Scholar 

  30. Dubosclard, G. et al. First testing of a volcano Doppler radar (VOLDORAD) at Mount Etna, Italy. Geophys. Res. Lett. 26, 3389–3392 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with A. Tupper, D. MacGorman, S. Nesbitt and M. Fromm. We thank the members of the ‘volcanic clouds’ discussion list for help with satellite images. P.C. and S.W.K. acknowledge support through the latter’s Walgreen Chair funds and NSF\EAR grant 06-09712 (S. Esperanza, programme director). G.G. acknowledges support through NSF\DMR grant 06-04435 (W. Fuller-Mora, programme director).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinaki Chakraborty.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Figure S1 with Legend and Supplementary References (PDF 523 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, P., Gioia, G. & Kieffer, S. Volcanic mesocyclones. Nature 458, 497–500 (2009). https://doi.org/10.1038/nature07866

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07866

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing