Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the plasma membrane proton pump

Abstract

A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi1,2,3, and Na+,K+-ATPase (the sodium–potassium pump) in animals4. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis5. The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na+,K+-ATPase and Ca2+-ATPase are type II6. Electron microscopy has revealed the overall shape of proton pumps7, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle of the membrane plane where it is lined by conserved hydrophilic and charged residues. Proton transport against a high membrane potential is readily explained by this structural arrangement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the plasma membrane H + -ATPase.
Figure 2: Structural conservation of P-type ATPase architecture.
Figure 3: The intramembranous buried cavity and proton binding site of the plasma membrane H + -ATPase.
Figure 4: Mechanism of proton transport by plasma membrane H + -ATPase.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors have been deposited in the Protein Data Bank with the accession number 3B8C.

References

  1. Serrano, R., Kielland-Brandt, M. C. & Fink, G. R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319, 689–693 (1986)

    Article  CAS  ADS  Google Scholar 

  2. Morsomme, P., Slayman, C. W. & Goffeau, A. Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H+-ATPase. Biochim. Biophys. Acta 1469, 133–157 (2000)

    Article  CAS  Google Scholar 

  3. Palmgren, M. G. Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 817–845 (2001)

    Article  CAS  Google Scholar 

  4. Skou, J. C. & Esmann, M. The Na,K-ATPase. J. Bioenerg. Biomembr. 24, 249–261 (1992)

    CAS  PubMed  Google Scholar 

  5. Pedersen, P. & Carafoli, E. Ion motive ATPases. 1. Ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 12, 146–150 (1987)

    Article  CAS  Google Scholar 

  6. Axelsen, K. B. & Palmgren, M. G. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46, 84–101 (1998)

    Article  CAS  ADS  Google Scholar 

  7. Auer, M., Scarborough, G. A. & Kuhlbrandt, W. Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature 392, 840–843 (1998)

    Article  CAS  ADS  Google Scholar 

  8. Harper, J. F., Manney, L., DeWitt, N. D., Yoo, M. H. & Sussman, M. R. The Arabidopsis thaliana plasma membrane H+-ATPase multigene family. Genomic sequence and expression of a third isoform. J. Biol. Chem. 265, 13601–13608 (1990)

    CAS  PubMed  Google Scholar 

  9. Buch-Pedersen, M. J., Venema, K., Serrano, R. & Palmgren, M. G. Abolishment of proton pumping and accumulation in the E1P conformational state of a plant plasma membrane H+-ATPase by substitution of a conserved aspartyl residue in transmembrane segment 6. J. Biol. Chem. 275, 39167–39173 (2000)

    Article  CAS  Google Scholar 

  10. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000)

    Article  CAS  ADS  Google Scholar 

  11. Sazinsky, M. H., Mandal, A. K., Arguello, J. M. & Rosenzweig, A. C. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase. J. Biol. Chem. 281, 11161–11166 (2006)

    Article  CAS  Google Scholar 

  12. Morth, J. P. et al. Crystal structure of the sodium–potassium pump. Nature doi: 10.1038/nature06419 (this issue)

  13. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002)

    Article  CAS  ADS  Google Scholar 

  14. Sorensen, T. L., Moller, J. V. & Nissen, P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304, 1672–1675 (2004)

    Article  CAS  ADS  Google Scholar 

  15. Toyoshima, C. & Mizutani, T. Crystal structure of the calcium pump with a bound ATP analogue. Nature 430, 529–535 (2004)

    Article  CAS  ADS  Google Scholar 

  16. Jensen, A. M., Sørensen, T. L., Olesen, C., Møller, J. V. & Nissen, P. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J. 25, 2305–2314 (2006)

    Article  Google Scholar 

  17. Eraso, P. & Portillo, F. Molecular mechanism of regulation of yeast plasma membrane H+-ATPase by glucose. Interaction between domains and identification of new regulatory sites. J. Biol. Chem. 269, 10393–10399 (1994)

    CAS  PubMed  Google Scholar 

  18. Morsomme, P., Dambly, S., Maudoux, O. & Boutry, M. Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region. J. Biol. Chem. 273, 34837–34842 (1998)

    Article  CAS  Google Scholar 

  19. MacLennan, D. H., Abu-Abed, M. & Kang, C. Structure–function relationships in Ca2+ cycling proteins. J. Mol. Cell. Cardiol. 34, 897–918 (2002)

    Article  CAS  Google Scholar 

  20. Buch-Pedersen, M. J. & Palmgren, M. G. Conserved Asp684 in transmembrane segment M6 of the plant plasma membrane P-type proton pump AHA2 is a molecular determinant of proton translocation. J. Biol. Chem. 278, 17845–17851 (2003)

    Article  CAS  Google Scholar 

  21. Dutra, M. B., Ambesi, A. & Slayman, C. W. Structure–function relationships in membrane segment 5 of the yeast Pma1 H+-ATPase. J. Biol. Chem. 273, 17411–17417 (1998)

    Article  CAS  Google Scholar 

  22. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. & Landau, E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681 (1997)

    Article  CAS  Google Scholar 

  23. Luecke, H., Richter, H. T. & Lanyi, J. K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280, 1934–1937 (1998)

    Article  CAS  ADS  Google Scholar 

  24. Hutcheon, M. L., Duncan, T. M., Ngai, H. & Cross, R. L. Energy-driven subunit rotation at the interface between subunit a and the c oligomer in the F O sector of Escherichia coli ATP synthase. Proc. Natl Acad. Sci. USA 98, 8519–8524 (2001)

    Article  CAS  ADS  Google Scholar 

  25. Fillingame, R. H. & Dmitriev, O. Y. Structural model of the transmembrane F O rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ . Biochim. Biophys. Acta 1565, 232–245 (2002)

    Article  CAS  Google Scholar 

  26. Olesen, C. et al. The structural basis of calcium transport by the calcium pump. Nature doi: 10.1038/nature06418 (this issue)

  27. Hirsch, R. E., Lewis, B. D., Spalding, E. P. & Sussman, M. R. A role for the AKT1 potassium channel in plant nutrition. Science 280, 918–921 (1998)

    Article  CAS  ADS  Google Scholar 

  28. Blatt, M. R., Rodriguez-Navarro, A. & Slayman, C. L. Potassium–proton symport in Neurospora: Kinetic control by pH and membrane potential. J. Membr. Biol. 98, 169–189 (1987)

    Article  CAS  Google Scholar 

  29. Amory, A., Goffeau, A., McIntosh, D. B. & Boyer, P. D. Exchange of oxygen between phosphate and water catalyzed by the plasma membrane ATPase from the yeast Schizosaccharomyces pombe . J. Biol. Chem. 257, 12509–12516 (1982)

    CAS  PubMed  Google Scholar 

  30. Briskin, D. P. & Reynolds-Niesman, I. Determination of H+/ATP stoichiometry for the plasma membrane H+-ATPase from red beet (Beta vulgaris L.) storage tissue. Plant Physiol. 95, 242–250 (1991)

    Article  CAS  Google Scholar 

  31. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  32. Storoni, L. C., McCoy, A. J. & Read, R. J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D 60, 432–438 (2004)

    Article  Google Scholar 

  33. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Macromol. Crystallogr. A 276, 472–494 (1997)

    Article  CAS  Google Scholar 

  34. Cowtan, K. 'dm': An automated procedure for phase improvement by density modification. CCP4 ESF-EACBM Newsletter Prot. Crystallogr. 31, 34–38 (1994)

    Google Scholar 

  35. Strong, M. et al. Toward the structural genomics of complexes: Crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis . Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006)

    Article  CAS  ADS  Google Scholar 

  36. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  37. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  38. Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. A robust bulk-solvent correction and anisotropic scaling procedure. Acta Crystallogr. D 61, 850–855 (2005)

    Article  Google Scholar 

  39. Laskowski, R. A., Macarthur, M. W., Moss, D. S. & Thornton, J. M. Procheck—a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

    Article  CAS  Google Scholar 

  40. Kleywegt, G. J. & Jones, T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. D 50, 178–185 (1994)

    Article  CAS  Google Scholar 

  41. DeLano, W. L. The PyMOL molecular graphics system on the world wide web. 〈http://www.pymol.org〉 (2002)

Download references

Acknowledgements

We thank T. L.-M. Sørensen for contributions to initial project design and E. Pohl, C. Schulze-Briese and T. Tomizaki for assistance with synchrotron data collection. We are grateful to A. M. Nielsen for technical assistance and L. Yatime for help with data collection. B.P.P. is supported by a PhD fellowship from the Graduate School of Science at the University of Aarhus, M.J.B-P. by a post-doctoral fellowship from the Carlsberg Foundation, J.P.M. by a post-doctoral fellowship from the DANSYNC programme of the Danish Research Council, and P.N. by a Hallas-Møller stipend from the Novo Nordisk Foundation.

Author Contributions B.P.P. performed crystallization experiments, collected and processed the data, and determined, refined and analysed the structure. M.J.B.-P. performed expression and protein purification, and later performed crystallization experiments and analysed the structure. J.P.M. assisted in data collection and processing. M.G.P. and P.N. contributed with equal resources, supervised the project and analysed the structure.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael G. Palmgren or Poul Nissen.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-4 with Legends and Supplementary Table 1. (PDF 14383 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, B., Buch-Pedersen, M., Preben Morth, J. et al. Crystal structure of the plasma membrane proton pump. Nature 450, 1111–1114 (2007). https://doi.org/10.1038/nature06417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06417

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing