Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

How kinesin waits between steps

Abstract

Kinesin-1 (conventional kinesin) is a dimeric motor protein that carries cellular cargoes along microtubules1,2 by hydrolysing ATP3 and moving processively in 8-nm steps4. The mechanism of processive motility involves the hand-over-hand motion of the two motor domains (‘heads’)5,6,7, a process driven by a conformational change in the neck-linker domain of kinesin8,9,10,11,12. However, the ‘waiting conformation’ of kinesin between steps remains controversial13,14,15,16—some models propose that kinesin adopts a one-head-bound intermediate17,18,19,20,21, whereas others suggest that both the kinesin heads are bound to adjacent tubulin subunits7,22,23. Addressing this question has proved challenging, in part because of a lack of tools to measure structural states of the kinesin dimer as it moves along a microtubule. Here we develop two different single-molecule fluorescence resonance energy transfer (smFRET) sensors to detect whether kinesin is bound to its microtubule track by one or two heads. Our FRET results indicate that, while moving in the presence of saturating ATP, kinesin spends most of its time bound to the microtubule with both heads. However, when nucleotide binding becomes rate-limiting at low ATP concentrations, kinesin waits for ATP in a one-head-bound state and makes brief transitions to a two-head-bound intermediate as it walks along the microtubule. On the basis of these results, we suggest a model for how transitions in the ATPase cycle position the two kinesin heads and drive their hand-over-hand motion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SmFRET observations of head–head configuration of kinesin under various nucleotide conditions.
Figure 2: SmFRET observations of mutant heterodimeric kinesin that persistently takes one-head-bound state.
Figure 3: Head–head configuration changes of kinesin while moving along microtubules.
Figure 4: A model for kinesin motility.

Similar content being viewed by others

References

  1. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003)

    Article  CAS  Google Scholar 

  2. Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nature Rev. Neurosci. 6, 201–214 (2005)

    Article  CAS  Google Scholar 

  3. Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994)

    Article  ADS  CAS  Google Scholar 

  4. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993)

    Article  ADS  CAS  Google Scholar 

  5. Asbury, C. L., Fehr, A. N. & Block, S. M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Kaseda, K., Higuchi, H. & Hirose, K. Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nature Cell Biol. 5, 1079–1082 (2003)

    Article  CAS  Google Scholar 

  7. Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Skiniotis, G. et al. Nucleotide-induced conformations in the neck region of dimeric kinesin. EMBO J. 22, 1518–1528 (2003)

    Article  CAS  Google Scholar 

  11. Asenjo, A. B., Weinberg, Y. & Sosa, H. Nucleotide binding and hydrolysis induces a disorder–order transition in the kinesin neck-linker region. Nature Struct. Mol. Biol. 13, 648–654 (2006)

    Article  CAS  Google Scholar 

  12. Tomishige, M., Stuurman, N. & Vale, R. D. Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nature Struct. Mol. Biol. 13, 887–894 (2006)

    Article  CAS  Google Scholar 

  13. Carter, N. J. & Cross, R. A. Kinesin’s moonwalk. Curr. Opin. Cell Biol. 18, 61–67 (2006)

    Article  CAS  Google Scholar 

  14. Valentine, M. T. & Gilbert, S. P. To step or not to step? How biochemistry and mechanics influence processivity in Kinesin and Eg5. Curr. Opin. Cell Biol. 19, 75–81 (2007)

    Article  CAS  Google Scholar 

  15. Hackney, D. D. Processive motor movement. Science 316, 58–59 (2007)

    Article  CAS  Google Scholar 

  16. Block, S. M. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Kawaguchi, K. & Ishiwata, S. Nucleotide-dependent single- to double-headed binding of kinesin. Science 291, 667–669 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Uemura, S. et al. Kinesin-microtubule binding depends on both nucleotide state and loading direction. Proc. Natl Acad. Sci. USA 99, 5977–5981 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 307–312 (2005)

    Article  ADS  Google Scholar 

  20. Auerbach, S. D. & Johnson, K. A. Alternating site ATPase pathway of rat conventional kinesin. J. Biol. Chem. 280, 37048–37060 (2005)

    Article  CAS  Google Scholar 

  21. Alonso, M. C. et al. An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science 316, 120–123 (2007)

    Article  ADS  CAS  Google Scholar 

  22. Asenjo, A. B., Krohn, N. & Sosa, H. Configuration of the two kinesin motor domains during ATP hydrolysis. Nature Struct. Biol. 10, 836–842 (2003)

    Article  CAS  Google Scholar 

  23. Hackney, D. D. The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP. Proc. Natl Acad. Sci. USA 102, 18338–18343 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Woehlke, G. et al. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997)

    Article  CAS  Google Scholar 

  25. Kaseda, K., Higuchi, H. & Hirose, K. Coordination of kinesin’s two heads studied with mutant heterodimers. Proc. Natl Acad. Sci. USA 99, 16058–16063 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Guydosh, N. R. & Block, S. M. Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc. Natl Acad. Sci. USA 103, 8054–8059 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Tomishige, M., Klopfenstein, D. R. & Vale, R. D. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263–2267 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Sablin, E. P. & Fletterick, R. J. Coordination between motor domains in processive kinesins. J. Biol. Chem. 279, 15707–15710 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Nakajima for support in cloning; H. Tadakuma and N. Stuurman for microscope construction and technical support; C. Shingyoji for the gift of sea urchin sperm; K. Kikuchi for the tracking program; and A. Yildiz and A. Carter for discussions. M.T. is supported by Grant-in-Aid for Scientific Research on Priority Areas from MEXT, Japan, a Research Grant for Young Investigators from the Human Frontier Science Program, and grants from the Mitsubishi Foundation and the Asahi Glass Foundation. R.D.V. is supported by grants from the Howard Hughes Medical Institute and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald D. Vale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S9 with Legends. (PDF 2069 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, T., Vale, R. & Tomishige, M. How kinesin waits between steps. Nature 450, 750–754 (2007). https://doi.org/10.1038/nature06346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06346

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing