Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism of chloride interaction with neurotransmitter:sodium symporters

Abstract

Neurotransmitter:sodium symporters (NSS) have a critical role in regulating neurotransmission and are targets for psychostimulants, anti-depressants and other drugs1,2. Whereas the non-homologous glutamate transporters mediate chloride conductance3, in the eukaryotic NSS chloride is transported together with the neurotransmitter4,5,6,7. In contrast, transport by the bacterial NSS family members LeuT, Tyt1 and TnaT is chloride independent8,9,10. The crystal structure of LeuT reveals an occluded binding pocket containing leucine and two sodium ions9, and is highly relevant for the neurotransmitter transporters11,12,13. However, the precise role of chloride in neurotransmitter transport and the location of its binding site remain elusive. Here we show that introduction of a negatively charged amino acid at or near one of the two putative sodium-binding sites of the GABA (γ-aminobutyric acid) transporter GAT-1 from rat brain (also called SLC6A1)14,15 renders both net flux and exchange of GABA largely chloride independent. In contrast to wild-type GAT-1, a marked stimulation of the rate of net flux, but not of exchange, was observed when the internal pH was lowered. Equivalent mutations introduced in the mouse GABA transporter GAT4 (SLC6A11) and the human dopamine transporter DAT (SLC6A3) also result in chloride-independent transport, whereas the reciprocal mutations in LeuT and Tyt1 render substrate binding and/or uptake by these bacterial NSS chloride dependent. Our data indicate that the negative charge, provided either by chloride or by the transporter itself, is required during binding and translocation of the neurotransmitter, probably to counterbalance the charge of the co-transported sodium ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A putative chloride site in GAT-1.
Figure 2: Net flux by wild-type and chloride-independent mutant transporters: theory and experiment.
Figure 3: Transport and binding by other NSS transporters.
Figure 4: Anion selectivity of GAT-1 S331 mutants and putative chloride-binding site in the NSS.

Similar content being viewed by others

References

  1. Kanner, B. I. Sodium-coupled neurotransmitter transport: structure, function and regulation. J. Exp. Biol. 196, 237–249 (1994)

    CAS  PubMed  Google Scholar 

  2. Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. & Caron, M. G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Wadiche, J. I., Amara, S. G. & Kavanaugh, M. P. Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728 (1995)

    Article  CAS  Google Scholar 

  4. Keynan, S. & Kanner, B. I. γ-Aminobutyric acid transport in reconstituted preparations from rat brain: coupled sodium and chloride fluxes. Biochemistry 27, 12–17 (1988)

    Article  CAS  Google Scholar 

  5. Hilgemann, D. W. & Lu, C. C. GAT1 (GABA:Na+:Cl-) cotransport function. Database reconstruction with an alternating access model. J. Gen. Physiol. 114, 459–475 (1999)

    Article  CAS  Google Scholar 

  6. Krause, S. & Schwarz, W. Identification and selective inhibition of the channel mode of the neuronal GABA transporter 1. Mol. Pharmacol. 68, 1728–1735 (2005)

    CAS  PubMed  Google Scholar 

  7. Roux, M. J. & Supplisson, S. Neuronal and glial glycine transporters have different stoichiometries. Neuron 25, 373–383 (2000)

    Article  CAS  Google Scholar 

  8. Androutsellis-Theotokis, A. et al. Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J. Biol. Chem. 278, 12703–12709 (2003)

    Article  CAS  Google Scholar 

  9. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Quick, M. et al. State-dependent conformations of the translocation pathway in the tyrosine transporter Tyt1, a novel neurotransmitter:sodium symporter from Fusobacterium nucleatum . J. Biol. Chem. 281, 26444–26454 (2006)

    Article  CAS  Google Scholar 

  11. Zhou, Y., Zomot, E. & Kanner, B. I. Identification of a lithium interaction site in the γ-aminobutyric acid (GABA) transporter GAT-1. J. Biol. Chem. 281, 22092–22099 (2006)

    Article  CAS  Google Scholar 

  12. Dodd, J. R. & Christie, D. L. Selective amino acid substitutions convert the creatine transporter to a γ-aminobutyric acid transporter. J. Biol. Chem. 282, 15528–15533 (2007)

    Article  CAS  Google Scholar 

  13. Vandenberg, R. J., Shaddick, K. & Ju, P. Molecular basis for substrate discrimination by glycine transporters. J. Biol. Chem. 282, 14447–14453 (2007)

    Article  CAS  Google Scholar 

  14. Radian, R., Bendahan, A. & Kanner, B. I. Purification and identification of the functional sodium- and chloride-coupled γ-aminobutyric acid transport glycoprotein from rat brain. J. Biol. Chem. 261, 15437–15441 (1986)

    CAS  PubMed  Google Scholar 

  15. Guastella, J. et al. Cloning and expression of a rat brain GABA transporter. Science 249, 1303–1306 (1990)

    Article  ADS  CAS  Google Scholar 

  16. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427, 803–807 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Dutzler, R., Campbell, E. B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Keynan, S., Suh, Y. J., Kanner, B. I. & Rudnick, G. Expression of a cloned γ-aminobutyric acid transporter in mammalian cells. Biochemistry 31, 1974–1979 (1992)

    Article  CAS  Google Scholar 

  20. Bennett, E. R., Su, H. & Kanner, B. I. Mutation of arginine 44 of GAT-1, a (Na+ + Cl-)-coupled γ-aminobutyric acid transporter from rat brain, impairs net flux but not exchange. J. Biol. Chem. 275, 34106–34113 (2000)

    Article  CAS  Google Scholar 

  21. Loo, D. D., Eskandari, S., Boorer, K. J., Sarkar, H. K. & Wright, E. M. Role of Cl- in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J. Biol. Chem. 275, 37414–37422 (2000)

    Article  CAS  Google Scholar 

  22. Lu, C. C. & Hilgemann, D. W. GAT1 (GABA:Na+:Cl-) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches. J. Gen. Physiol. 114, 429–444 (1999)

    Article  CAS  Google Scholar 

  23. Ryan, R. M. & Mindell, J. A. The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nature Struct. Mol. Biol. 14, 365–371 (2007)

    Article  CAS  Google Scholar 

  24. Mari, S. A. et al. Role of the conserved glutamine 291 in the rat γ-aminobutyric acid transporter rGAT-1. Cell. Mol. Life Sci. 63, 100–111 (2006)

    Article  CAS  Google Scholar 

  25. Mager, S. et al. Ion binding and permeation at the GABA transporter GAT1. J. Neurosci. 16, 5405–5414 (1996)

    Article  CAS  Google Scholar 

  26. Quick, M. & Javitch, J. A. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc. Natl Acad. Sci. USA 104, 3603–3608 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Forrest, L. R., Tavoulari, S., Zhang, Y.-W., Rudnick, G. & Honig, B. Identification of a chloride ion binding site in Na+/Cl- dependent transporters. Proc. Natl Acad. Sci. USA 104, 12761–12766 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Israel Science Foundation (to B.I.K.) and NIH grants (to J.A.J.). We thank S. Qu for the generation of the GAT-1 S331G mutant; M. Sonders for making the LeuT E290S and Tyt1 A263S mutants; and L. Chung for cell culture and membrane preparations.

Author Contributions E.Z., A.B. and B.I.K. did the experimental work for the eukaryotic transporters and M.Q. and Y.Z. did the experiments on the bacterial transporters. E.Z., M.Q., J.A.J. and B.I.K. did project planning and manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baruch I. Kanner.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion with additional references and Supplementary Figures S1-S5 with Legends. (PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zomot, E., Bendahan, A., Quick, M. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449, 726–730 (2007). https://doi.org/10.1038/nature06133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06133

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing