Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent control of optical information with matter wave dynamics

Abstract

In recent years, significant progress has been achieved in manipulating matter with light, and light with matter1. Resonant laser fields interacting with cold, dense atom clouds provide a particularly rich system2,3,4,5,6. Such light fields interact strongly with the internal electrons of the atoms, and couple directly to external atomic motion through recoil momenta imparted when photons are absorbed and emitted. Ultraslow light propagation in Bose–Einstein condensates7 represents an extreme example of resonant light manipulation using cold atoms. Here we demonstrate that a slow light pulse can be stopped and stored in one Bose–Einstein condensate and subsequently revived from a totally different condensate, 160 μm away; information is transferred through conversion of the optical pulse into a travelling matter wave. In the presence of an optical coupling field, a probe laser pulse is first injected into one of the condensates where it is spatially compressed to a length much shorter than the coherent extent of the condensate. The coupling field is then turned off, leaving the atoms in the first condensate in quantum superposition states that comprise a stationary component and a recoiling component in a different internal state. The amplitude and phase of the spatially localized light pulse are imprinted on the recoiling part of the wavefunction, which moves towards the second condensate. When this ‘messenger’ atom pulse is embedded in the second condensate, the system is re-illuminated with the coupling laser. The probe light is driven back on and the messenger pulse is coherently added to the matter field of the second condensate by way of slow-light-mediated atomic matter-wave amplification. The revived light pulse records the relative amplitude and phase between the recoiling atomic imprint and the revival condensate. Our results provide a dramatic demonstration of coherent optical information processing with matter wave dynamics. Such quantum control may find application in quantum information processing and wavefunction sculpting.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the experiment.
Figure 2: Light pulse storage and revival in two separate condensates.
Figure 3: Light pulse revivals in single clouds.

References

  1. Southwell, K. (ed.) Ultracold matter. Nature 416, 205–246 (2002)

    Article  ADS  Google Scholar 

  2. Svistunov, B. V. & Shlyapnikov, G. V. Effect of Bose condensation on resonant optics in gaseous H↓ . Sov. Phys. JETP 71, 71–76 (1990)

    Google Scholar 

  3. Politzer, H. D. Light incident on a Bose-condensed gas. Phys. Rev. A 43, 6444–6446 (1991)

    Article  ADS  CAS  Google Scholar 

  4. Javanainen, J. Optical signatures of a tightly confined Bose condensate. Phys. Rev. Lett. 72, 2375–2378 (1994)

    Article  ADS  CAS  Google Scholar 

  5. You, L., Lewenstein, M. & Cooper, J. Line shapes for light scattered from Bose-Einstein condensates. Phys. Rev. A 50, R3565–R3568 (1994)

    Article  ADS  CAS  Google Scholar 

  6. Morice, O., Castin, Y. & Dalibard, J. Refractive index of a dilute Bose gas. Phys. Rev. A 51, 3896–3901 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Ketterle, W. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Leggett, A. J. Bose-Einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys. 73, 307–356 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Arimondo, E. Coherent population trapping in laser spectroscopy. Prog. Opt. 35, 257–354 (1996)

    Article  ADS  Google Scholar 

  12. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)

    Article  CAS  Google Scholar 

  13. Knight, P. L., Stoicheff, B. & Walls, D. (eds) Highlights in quantum optics. Phil. Trans. R. Soc. Lond. A 355, 2215–2416 (1997)

    ADS  MATH  Google Scholar 

  14. Kash, M. M. et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Budker, D., Kimball, D. F., Rochester, S. M. & Yashchuk, V. V. Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett. 83, 1767–1770 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Dutton, Z. & Hau, L. V. Storing and processing optical information with ultraslow light in Bose-Einstein condensates. Phys. Rev. A 70, 053831 (2004)

    Article  ADS  Google Scholar 

  18. Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Dutton, Z., Ginsberg, N. S., Slowe, C. & Hau, L. V. The art of taming light: Ultra-slow and stopped light. Europhys. News 35, 33–38 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Baym, G. Lectures on Quantum Mechanics 425–426 (Benjamin/Cummings Publishing Co., Reading, Massachusetts, 1974)

    Google Scholar 

  21. Pitaevskii, L. & Stringari, S. Bose-Einstein Condensation (Oxford Univ. Press, Oxford, UK, 2003)

    MATH  Google Scholar 

  22. Lewenstein, M., You, L., Cooper, J. & Burnett, K. Quantum field theory of atoms interacting with photons: Foundations. Phys. Rev. A 50, 2207–2231 (1994)

    Article  ADS  CAS  Google Scholar 

  23. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Photons & Atoms (Wiley, New York, 1997)

    Book  Google Scholar 

  24. Deng, L. et al. Four-wave mixing with matter waves. Nature 398, 218–220 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Inouye, S. et al. Phase-coherent amplification of atomic matter waves. Nature 402, 641–644 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Kozuma, M. et al. Phase-coherent amplification of matter waves. Science 286, 2309–2312 (1999)

    Article  CAS  Google Scholar 

  27. Moore, M. G. & Meystre, P. Atomic four-wave mixing: Fermions versus bosons. Phys. Rev. Lett. 86, 4199–4202 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Ketterle, W. & Inouye, S. Does matter wave amplification work for fermions? Phys. Rev. Lett. 86, 4203–4206 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Burke, J. P., Greene, C. H. & Bohn, J. L. Multichannel cold collisions: Simple dependences on energy and magnetic field. Phys. Rev. Lett. 81, 3355–3358 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Band, Y. B., Trippenbach, M., Burke, J. P. & Julienne, P. S. Elastic scattering loss of atoms from colliding Bose-Einstein condensate wave packets. Phys. Rev. Lett. 84, 5462–5465 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Golovchenko and M. Burns for discussions, and W. Hill, Z. Dutton and J. MacArthur for technical assistance. This work was supported by the Air Force Office of Sponsored Research, the National Science Foundation, and the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lene Vestergaard Hau.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginsberg, N., Garner, S. & Hau, L. Coherent control of optical information with matter wave dynamics. Nature 445, 623–626 (2007). https://doi.org/10.1038/nature05493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05493

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing