Nature 445, 623-626 (8 February 2007) | doi:10.1038/nature05493; Received 23 October 2006; Accepted 24 November 2006

Coherent control of optical information with matter wave dynamics

Naomi S. Ginsberg1, Sean R. Garner1 & Lene Vestergaard Hau1

  1. Department of Physics, and Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

Correspondence to: Correspondence and requests for materials should be addressed to L.V.H. (Email: hau@physics.harvard.edu).

In recent years, significant progress has been achieved in manipulating matter with light, and light with matter1. Resonant laser fields interacting with cold, dense atom clouds provide a particularly rich system2, 3, 4, 5, 6. Such light fields interact strongly with the internal electrons of the atoms, and couple directly to external atomic motion through recoil momenta imparted when photons are absorbed and emitted. Ultraslow light propagation in Bose–Einstein condensates7 represents an extreme example of resonant light manipulation using cold atoms. Here we demonstrate that a slow light pulse can be stopped and stored in one Bose–Einstein condensate and subsequently revived from a totally different condensate, 160 mum away; information is transferred through conversion of the optical pulse into a travelling matter wave. In the presence of an optical coupling field, a probe laser pulse is first injected into one of the condensates where it is spatially compressed to a length much shorter than the coherent extent of the condensate. The coupling field is then turned off, leaving the atoms in the first condensate in quantum superposition states that comprise a stationary component and a recoiling component in a different internal state. The amplitude and phase of the spatially localized light pulse are imprinted on the recoiling part of the wavefunction, which moves towards the second condensate. When this 'messenger' atom pulse is embedded in the second condensate, the system is re-illuminated with the coupling laser. The probe light is driven back on and the messenger pulse is coherently added to the matter field of the second condensate by way of slow-light-mediated atomic matter-wave amplification. The revived light pulse records the relative amplitude and phase between the recoiling atomic imprint and the revival condensate. Our results provide a dramatic demonstration of coherent optical information processing with matter wave dynamics. Such quantum control may find application in quantum information processing and wavefunction sculpting.

Extra navigation