Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions

Abstract

The discovery of ferromagnetism in Mn-doped GaAs1 has ignited interest in the development of semiconductor technologies based on electron spin and has led to several proof-of-concept spintronic devices2,3,4. A major hurdle for realistic applications of Ga1-xMnxAs, or other dilute magnetic semiconductors, remains that their ferromagnetic transition temperature is below room temperature. Enhancing ferromagnetism in semiconductors requires us to understand the mechanisms for interaction between magnetic dopants, such as Mn, and identify the circumstances in which ferromagnetic interactions are maximized5. Here we describe an atom-by-atom substitution technique using a scanning tunnelling microscope (STM) and apply it to perform a controlled study at the atomic scale of the interactions between isolated Mn acceptors, which are mediated by holes in GaAs. High-resolution STM measurements are used to visualize the GaAs electronic states that participate in the Mn–Mn interaction and to quantify the interaction strengths as a function of relative position and orientation. Our experimental findings, which can be explained using tight-binding model calculations, reveal a strong dependence of ferromagnetic interaction on crystallographic orientation. This anisotropic interaction can potentially be exploited by growing oriented Ga1-xMnxAs structures to enhance the ferromagnetic transition temperature beyond that achieved in randomly doped samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-atom substitution of one Mn for one Ga atom.
Figure 2: High-resolution measurements of a single Mn acceptor (MnGa).
Figure 3: Mn pair substituted in Ga sites spaced 8 Å apart in a <110 > orientation.
Figure 4: Topographs (40 Å 2 , +1.5 V) of several Mn pairs and the acceptor-level splitting energy of these pairs.

Similar content being viewed by others

References

  1. Ohno, H. et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor device heterostructure. Nature 402, 790–792 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Eid, K. F. et al. Exchange biasing of the ferromagnetic semiconductor Ga1-xMnxAs. Appl. Phys. Lett. 85, 1556–1558 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Macdonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nature Mater. 4, 195–202 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Edmonds, K. et al. High-Curie-temperature Ga1-xMnxAs obtained by resistance-monitored annealing. Appl. Phys. Lett. 81, 4991–4993 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Ku, K. C. et al. Highly enhanced Curie temperature in low-temperature annealed [Ga,Mn]As epilayers. Appl. Phys. Lett. 82, 2302–2304 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Chiba, D., Takamura, K., Matsukura, F. & Ohno, H. Effect of low-temperature annealing on (Ga,Mn)As trilayer structures. Appl. Phys. Lett. 82, 3020–3022 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Edmonds, K. W. et al. Mn interstitial diffusion in (Ga, Mn)As. Phys. Rev. Lett. 92, 037201 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yakunin, A. M. et al. Spatial structure of an individual Mn acceptor in GaAs. Phys. Rev. Lett. 92, 216806 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Yakunin, A. M. et al. Spatial structure of Mn-Mn acceptor pairs in GaAs. Phys. Rev. Lett. 95, 256402 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Sanvito, S., Theurich, G. & Hill, N. A. Density functional calculations for III–V diluted ferromagnetic semiconductors: a review. J. Supercond. 15, 85–104 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Mahadevan, P. & Zunger, A. First-principles investigation of the assumptions underlying model-Hamiltonian approaches to ferromagnetism of 3d impurities in III–V semiconductors. Phys. Rev. B 69, 115211 (2004)

    Article  ADS  Google Scholar 

  15. Feenstra, R. M. & Stroscio, J. A. Atom-selective imaging of the GaAs(110) surface. Phys. Rev. Lett. 58, 1192–1195 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Feenstra, R. M. & Stroscio, J. A. Tunneling spectroscopy of the GaAs(110) surface. J. Vac. Sci. Technol. B 5, 923–929 (1987)

    Article  CAS  Google Scholar 

  17. Fu, H., Ye, L., Zhang, K. & Xie, X. Chemisorption of Mn on a GaAs(110) surface. Surf. Sci. 341, 273–281 (1995)

    Article  ADS  Google Scholar 

  18. Kitchen, D., Richardella, A. & Yazdani, A. Spatial structure of a single Mn impurity state on GaAs (110) Surface. J. Supercond. 18, 23–28 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Tang, J.-M. & Flatté, M. E. Multiband tight-binding model of local magnetism in Ga1-xMnxAs. Phys. Rev. Lett. 92, 047201 (2004)

    Article  ADS  PubMed  Google Scholar 

  20. Okabayashi, J. et al. Angle-resolved photoemission study of Ga1-xMnxAs. Phys. Rev. B 64, 125304 (2001)

    Article  ADS  Google Scholar 

  21. Singley, E. J., Kawakami, R., Awschalom, D. D. & Basov, D. N. Infrared probe of itinerant ferromagnetism in Ga1-xMnxAs. Phys. Rev. Lett. 89, 097203 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Burch, K. S. et al. Impurity band conduction in a high temperature ferromagnetic semiconductor. Preprint at http://arXiv.org/cond-mat0603851 (2006).

  23. Flatté, M. E. & Reynolds, D. E. Local spectrum of a superconductor as a probe of interactions between magnetic impurities. Phys. Rev. B 61, 14810–14813 (2000)

    Article  ADS  Google Scholar 

  24. Mahadevan, P., Zunger, A. & Sarma, D. D. Unusual directional dependence of exchange energies in GaAs diluted with Mn: Is the RKKY description relevant? Phys. Rev. Lett. 93, 177201 (2004)

    Article  ADS  PubMed  Google Scholar 

  25. Zaránd, G. & Jankó, B. Ga12xMnxAs: A frustrated ferromagnet. Phys. Rev. Lett. 89, 047201 (2002)

    Article  ADS  PubMed  Google Scholar 

  26. Timm, C. & MacDonald, A. H. Anisotropic exchange interactions in III–V diluted magnetic semiconductors. Phys. Rev. B 71, 155206 (2005)

    Article  ADS  Google Scholar 

  27. Kane, B. M. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Tang, J.-M. & Flatté, M. E. Spin-orientation-dependent spatial structure of a magnetic acceptor state in a zinc-blende semiconductor. Phys. Rev. B 72, 161315(R) (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US ARO MURI and the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Yazdani.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Discussion, Supplementary Methods, Supplementary Figures (pertaining to measurements of Mn pairs, theoretical methods for the tight-binding model, and further insights of application of the model to the experiment). (PDF 238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitchen, D., Richardella, A., Tang, JM. et al. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442, 436–439 (2006). https://doi.org/10.1038/nature04971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04971

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing