Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An optical lattice clock

Abstract

The precision measurement of time and frequency is a prerequisite not only for fundamental science but also for technologies that support broadband communication networks and navigation with global positioning systems (GPS). The SI second is currently realized by the microwave transition of Cs atoms with a fractional uncertainty of 10-15 (ref. 1). Thanks to the optical frequency comb technique2,3, which established a coherent link between optical and radio frequencies, optical clocks4 have attracted increasing interest as regards future atomic clocks with superior precision. To date, single trapped ions4,5,6 and ultracold neutral atoms in free fall7,8 have shown record high performance that is approaching that of the best Cs fountain clocks1. Here we report a different approach, in which atoms trapped in an optical lattice serve as quantum references. The ‘optical lattice clock’9,10 demonstrates a linewidth one order of magnitude narrower than that observed for neutral-atom optical clocks7,8,11, and its stability is better than that of single-ion clocks4,5. The transition frequency for the Sr lattice clock is 429,228,004,229,952(15) Hz, as determined by an optical frequency comb referenced to the SI second.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical lattice clock.
Figure 2: Experimental configuration.
Figure 3: Determination of the ‘magic’ wavelength.
Figure 4: Absolute frequency measurement of the 1S0 - 3P0 transition of Sr atoms in an optical lattice.

Similar content being viewed by others

References

  1. Pereira Dos Santos, F. et al. Controlling the cold collision shift in high precision atomic interferometry. Phys. Rev. Lett. 89, 233004 (2002)

    Article  ADS  CAS  Google Scholar 

  2. Udem, Th., Reichert, J., Holzwarth, R. & Hänsch, T. W. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 82, 3568–3571 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Diddams, S. A. et al. An optical clock based on a single trapped 199Hg+ ion. Science 293, 825–828 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Peik, E. et al. Limit on the present temporal variation of the fine structure constant. Phys. Rev. Lett. 93, 170801 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Margolis, H. S. et al. Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion. Science 306, 1355–1358 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Wilpers, G. et al. Optical clock with ultracold neutral atoms. Phys. Rev. Lett. 89, 230801 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Oates, C. W., Curtis, E. A. & Hollberg, L. Improved short-term stability of optical frequency standards: approaching 1 Hz in 1 s with the Ca standard at 657 nm. Opt. Lett. 25, 1603–1605 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Katori, H. in Proc. 6th Symp. on Frequency Standards and Metrology (ed. Gill, P.) 323–330 (World Scientific, Singapore, 2002)

    Book  Google Scholar 

  10. Katori, H., Takamoto, M., Pal'chikov, V. G. & Ovsiannikov, V. D. Ultrastable optical clock with neutral atoms in an engineered light shift trap. Phys. Rev. Lett. 91, 173005 (2003)

    Article  ADS  Google Scholar 

  11. Ruschewitz, F. et al. Sub-kilohertz optical spectroscopy with a time domain atom interferometer. Phys. Rev. Lett. 80, 3173–3176 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Allan, D. W. Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966)

    Article  ADS  Google Scholar 

  13. Dicke, R. H. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953)

    Article  ADS  CAS  Google Scholar 

  14. Dehmelt, H. G. Mono-ion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. 31, 83–87 (1982)

    Article  ADS  Google Scholar 

  15. Jessen, P. S. & Deutsch, I. H. in Advances in Atomic, Molecular and Optical Physics Vol. 37 (eds Bederson, P. & Walther, H.) 95–138 (Academic, San Diego, 1996)

    Google Scholar 

  16. Katori, H., Ido, T. & Kuwata-Gonokami, M. Optimal design of dipole potentials for efficient loading of Sr atoms. J. Phys. Soc. Jpn 68, 2479–2482 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Ido, T. & Katori, H. Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime. Phys. Rev. Lett. 91, 053001 (2003)

    Article  ADS  Google Scholar 

  18. Takamoto, M. & Katori, H. Spectroscopy of the 1S0 - 3P0 clock transition of 87Sr in an optical lattice. Phys. Rev. Lett. 91, 223001 (2003)

    Article  ADS  Google Scholar 

  19. Young, B. C., Cruz, F. C., Itano, W. M. & Bergquist, J. C. Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Bureau International des Poids et Mesures (BIPM), Circular T, No. 200 http://www1.bipm.org/en/scientific/tai/time_ftp.html (August 2004).

  21. Courtillot, I. et al. Clock transition for a future optical frequency standard with trapped atoms. Phys. Rev. A 68, 030501 (2003)

    Article  ADS  Google Scholar 

  22. Gupta, S. et al. Radio-frequency spectroscopy of ultracold fermions. Science 300, 1723–1726 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Degenhardt, C., Stoehr, H., Sterr, U., Riehle, F. & Lisdat, C. Wavelength-dependent ac Stark shift of the 1S0 - 3P1 transition at 657 nm in Ca. Phys. Rev. A 70, 023414 (2004)

    Article  ADS  Google Scholar 

  24. Porsev, S. G., Derevianko, A. & Fortson, E. N. Possibility of an optical clock using the 61S0 → 63P00 transition in 171,173Yb atoms held in an optical lattice. Phys. Rev. A 69, 021403 (2004)

    Article  ADS  Google Scholar 

  25. Angstmann, E. J., Dzuba, V. A. & Flambaum, V. V. Relativistic effects in two valence-electron atoms and ions and the search for variation of the fine-structure constant. Phys. Rev. A 70, 014102 (2004)

    Article  ADS  Google Scholar 

  26. Knight, J. C. Photonic crystal fibres. Nature 424, 847–851 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Hong, F.-L. et al. Frequency comparison of 127I2-stabilized Nd:YAG lasers. IEEE Trans. Instrum. Meas. 48, 532–536 (1999)

    Article  CAS  Google Scholar 

  28. Ma, L.-S., Jungner, P., Ye, J. & Hall, J. L. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett. 19, 1777–1779 (1994)

    Article  ADS  CAS  Google Scholar 

  29. Rauschenbeutel, A., Schadwinkel, H., Gomer, V. & Meschede, D. Standing light fields for cold atoms with intrinsically stable and variable time phases. Opt. Commun. 148, 45–48 (1998)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Yasuda, Y. Fukuyama and J. Jiang for assistance with the experiments, and A. Onae and S. Ohshima for discussions. This work was supported by the Strategic Information and Communications R&D Promotion Programme (SCOPE) of the Ministry of Internal Affairs and Communications of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Katori.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takamoto, M., Hong, FL., Higashi, R. et al. An optical lattice clock. Nature 435, 321–324 (2005). https://doi.org/10.1038/nature03541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03541

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing