Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-term sensitivity of soil carbon turnover to warming

Abstract

The sensitivity of soil carbon to warming is a major uncertainty in projections of carbon dioxide concentration and climate1. Experimental studies overwhelmingly indicate increased soil organic carbon (SOC) decomposition2,3,4,5,6,7,8 at higher temperatures, resulting in increased carbon dioxide emissions from soils. However, recent findings have been cited as evidence against increased soil carbon emissions in a warmer world9,10. In soil warming experiments, the initially increased carbon dioxide efflux returns to pre-warming rates within one to three years10,11,12,13,14, and apparent carbon pool turnover times are insensitive to temperature15. It has already been suggested that the apparent lack of temperature dependence could be an artefact due to neglecting the extreme heterogeneity of soil carbon16, but no explicit model has yet been presented that can reconcile all the above findings. Here we present a simple three-pool model that partitions SOC into components with different intrinsic turnover rates. Using this model, we show that the results of all the soil-warming experiments are compatible with long-term temperature sensitivity of SOC turnover: they can be explained by rapid depletion of labile SOC combined with the negligible response of non-labile SOC on experimental timescales. Furthermore, we present evidence that non-labile SOC is more sensitive to temperature than labile SOC, implying that the long-term positive feedback of soil decomposition in a warming world may be even stronger than predicted by global models1,17,18,19,20.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature responses of the three-pool Arrhenius model.
Figure 2: Activation energy and turnover time.

Similar content being viewed by others

References

  1. Prentice, I. C. et al. in Climate Change 2001: The Scientific Basis (eds. Houghton, J. T. et al.) 185–225 (Cambridge Univ. Press, Cambridge, 2001)

    Google Scholar 

  2. Jenkinson, D. S. & Ayanaba, A. Decomposition of C-14-labeled plant material under tropical conditions. Soil Sci. Soc. Am. J. 41, 912–915 (1977)

    Article  ADS  CAS  Google Scholar 

  3. Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994)

    Article  Google Scholar 

  4. Trumbore, S. E., Chadwick, O. A. & Amundson, R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272, 393–396 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Kätterer, T., Reichstein, M., Andrén, O. & Lomander, A. Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biol. Fertil. Soils 27, 258–262 (1998)

    Article  Google Scholar 

  6. Holland, E. A., Neff, J. C., Townsend, A. R. & McKeown, B. Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: Implications for models. Glob. Biogeochem. Cycles 14, 1137–1151 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Dalias, P., Anderson, J. M., Bottner, P. & Coûteaux, M. M. Long-term effects of temperature on carbon mineralisation processes. Soil Biol. Biochem. 33, 1049–1057 (2001)

    Article  CAS  Google Scholar 

  8. Sanderman, J., Amundson, R. & Baldocchi, D. D. Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time. Glob. Biogeochem. Cycles 17, 1061–1075 (2003)

    Article  ADS  Google Scholar 

  9. Grace, J. & Rayment, M. Respiration in the balance. Nature 404, 819–820 (2000)

    Article  CAS  Google Scholar 

  10. Jarvis, P. & Linder, S. Constraints to growth of boreal forests. Nature 405, 904–905 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Peterjohn, W. T. et al. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol. Appl. 4, 617–625 (1994)

    Article  Google Scholar 

  12. Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Luo, Y. Q., Wan, S. Q., Hui, D. F. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Giardina, C. P. & Ryan, M. G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404, 858–861 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Davidson, E. A., Trumbore, S. E. & Amundson, R. Biogeochemistry—Soil warming and organic carbon content. Nature 408, 789–790 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Jenkinson, D. S., Adams, D. E. & Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 351, 304–306 (1991)

    Article  ADS  CAS  Google Scholar 

  18. Cao, M. K. & Woodward, F. I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–374 (2001)

    Article  ADS  Google Scholar 

  20. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Trumbore, S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecol. Appl. 10, 399–411 (2000)

    Article  Google Scholar 

  22. Bird, M. I., Chivas, A. R. & Head, J. A latitudinal gradient in carbon turnover times in forest soils. Nature 381, 143–146 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Bosatta, E. & Ågren, G. I. Soil organic matter quality interpreted thermodynamically. Soil Biol. Biochem. 31, 1889–1891 (1999)

    Article  CAS  Google Scholar 

  24. Jenny, H. Relation of temperature to the amount of nitrogen in soils. Soil Sci. 27, 169–188 (1929)

    Article  ADS  CAS  Google Scholar 

  25. Burke, I. C. et al. Texture, climate, and cultivation effects on soil organic matter content in the US grassland soils. Soil Sci. Soc. Am. J. 53, 800–805 (1989)

    Article  ADS  Google Scholar 

  26. Liski, J., Ilvesniemi, H., Makela, A. & Westman, C. J. CO2 emissions from soil in response to climatic warming are overestimated—The decomposition of old soil organic matter is tolerant of temperature. Ambio 28, 171–174 (1999)

    Google Scholar 

  27. Ågren, G. I. Temperature dependence of old soil organic matter. Ambio 29, 55 (2000)

    Article  Google Scholar 

  28. Janssens, I. A. et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob. Change Biol. 7, 269–278 (2001)

    Article  ADS  Google Scholar 

  29. Gu, L., Post, W. M. & King, A. W. Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: A model analysis. Glob. Biogeochem. Cycles 18, 1022–1032 (2004)

    Article  ADS  Google Scholar 

  30. Ågren, G. I. & Bosatta, E. Reconciling differences in predictions of temperature response of soil organic matter. Soil Biol. Biochem. 34, 129–132 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Arneth, F. Badeck, T. Christensen, G. Churkina, C. Czimczik, C. Gracia, V. Hahn, E. Hobbie, J. Kaplan, F. Joos, J. Liski, J. Lloyd, S. Sabaté, D. Schimel, U. Seibt, S. Sitch, P. Smith, J. Trenbath, S. Trumbore and R. Valentini for discussions, and S. Schott for technical editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Knorr.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knorr, W., Prentice, I., House, J. et al. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005). https://doi.org/10.1038/nature03226

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03226

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing