Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic enhancement of superconductivity from electron spin domains

Abstract

Since the discovery of superconductivity1, there has been a drive to understand the mechanisms by which it occurs. The BCS (Bardeen–Cooper–Schrieffer) model successfully treats the electrons in conventional superconductors as pairs coupled by phonons (vibrational modes of oscillation) moving through the material2, but there is as yet no accepted model for high-transition-temperature, organic or ‘heavy fermion’ superconductivity. Experiments that reveal unusual properties of those superconductors could therefore point the way to a deeper understanding of the underlying physics. In particular, the response of a material to a magnetic field can be revealing, because this usually reduces or quenches superconductivity. Here we report measurements of the heat capacity and magnetization that show that, for particular orientations of an external magnetic field, superconductivity in the heavy-fermion material CeCoIn5 is enhanced through the magnetic moments (spins) of individual electrons. This enhancement occurs by fundamentally altering how the superconducting state forms, resulting in regions of superconductivity alternating with walls of spin-polarized unpaired electrons; this configuration lowers the free energy and allows superconductivity to remain stable. The large magnetic susceptibility of this material leads to an unusually strong coupling of the field to the electron spins, which dominates over the coupling to the electron orbits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Qualitative phase diagram.
Figure 2: Heat capacity and magnetocaloric measurements.
Figure 3: Landau level quantization within the FFLO state.
Figure 4: Experimental HT phase diagram for CeCoIn5.

Similar content being viewed by others

References

  1. Onnes, H. K. The resistance of pure mercury at helium temperatures. Comm. Phys. Lab. Univ. Leiden. No. B 120, 3 (1911)

    Google Scholar 

  2. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Werthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–302 (1966)

    Article  ADS  CAS  Google Scholar 

  4. Clogston, A. M. Upper limit for critical field in hard superconductors. Phys. Rev. Lett. 9, 266–267 (1962)

    Article  ADS  Google Scholar 

  5. Maki, K. Effect of Pauli paramagnetism on magnetic properties of high-field superconductors. Phys. Rev. 148, 362–369 (1966)

    Article  ADS  CAS  Google Scholar 

  6. Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550–A563 (1964)

    Article  ADS  Google Scholar 

  7. Larkin, A. I. & Ovchinnikov, Y. N. Inhomogeneous state of superconductors. Sov. Phys. JETP 20, 762–769 (1965)

    MathSciNet  Google Scholar 

  8. Norman, M. R. Existence of the FFLO state in superconducting UPd2Al3 . Phys. Rev. Lett. 71, 3391 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Agterberg, D. F. & Yang, K. The effect of impurities on Fulde-Ferrell-Larkin-Ovchinnikov superconductors. J. Phys. Condens. Matter 13, 9259–9270 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Buzdin, A. I. & Brison, J. P. New solutions for the superconducting order parameter in a high magnetic field. Phys. Lett. A 218, 359–366 (1996)

    Article  ADS  CAS  Google Scholar 

  11. Buzdin, A. I. & Brison, J. P. Non-uniform state in 2D superconductors. Europhys. Lett. 35, 707–712 (1996)

    Article  ADS  CAS  Google Scholar 

  12. Shimahara, H. & Rainer, D. Crossover from vortex states to the Fulde-Ferrell-Larkin-Ovchinnikov state in two-dimensional s- and d-wave superconductors. J. Phys. Soc. Jpn 66, 3591–3599 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Houzet, M. & Buzdin, A. Structure of the vortex lattice in the Fulde-Ferrell-Larkin-Ovchinnikov state. Phys. Rev. B 63, 184521 (2001)

    Article  ADS  Google Scholar 

  14. Petrovic, C. et al. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys. Condens. Matter 13, L337–L342 (2001)

    Article  CAS  Google Scholar 

  15. Ikeda, S. et al. Unconventional superconductivity in CeCoIn5 studied by the specific heat and magnetization measurements. J. Phys. Soc. Jpn 70, 2248–2251 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Movshovich, R. et al. Unconventional superconductivity in CeIrIn5 and CeCoIn5: Specific heat and thermal conductivity studies. Phys. Rev. Lett. 86, 5152–5155 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Hegger, H. et al. Pressure-induced superconductivity in quasi-2D CeRhIn5 . Phys. Rev. Lett. 84, 4986–4989 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Sachdev, S. Quantum criticality: Competing ground states in low dimensions. Science 288, 475–480 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Nicklas, M. et al. Response of the heavy-fermion superconductor CeCoIn5 to pressure: Roles of dimensionality and proximity to a quantum-critical point. J. Phys. Condens. Matter 13, L905–L912 (2001)

    Article  CAS  Google Scholar 

  20. Monthoux, P. & Lonzarich, G. G. Magnetically mediated superconductivity in quasi-two and three dimensions. Phys. Rev. B 63, 054529 (2001)

    Article  ADS  Google Scholar 

  21. Tayama, T. et al. Unconventional heavy-fermion superconductor CeCoIn5: dc magnetization study at temperatures down to 50 mK. Phys. Rev. B 65, 180504 (2002)

    Article  ADS  Google Scholar 

  22. Bianchi, A. et al. First-order superconducting phase transition in CeCoIn5 . Phys. Rev. Lett. 89, 137002 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Matsuo, S., Higashitani, S., Nagato, Y. & Nagai, K. Phase diagram of the Fulde-Ferrell-Larkin-Ovchinnikov state in a three-dimensional superconductor. J. Phys. Soc. Jpn 67, 280–289 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Murphy, T. P. et al. Anomalous superconductivity and field-induced magnetism in CeCoIn5 . Phys. Rev. B 65, 100514 (2002)

    Article  ADS  Google Scholar 

  25. Paglione, J. et al. Field-induced Fermi liquid state in CeCoIn5 . Phys. Rev. Lett. (submitted); preprint at 〈http://xxx.lanl.gov/cond-mat/0212502〉 (2002)

  26. Burkhardt, H. & Rainer, D. Fulde-Ferrell-Larkin-Ovchinnikov state in layered superconductors. Ann. Phys. 3, 181–194 (1994)

    Article  CAS  Google Scholar 

  27. Hannahs, S. T. & Fortune, N. A. Heat capacity cell for angular measurements in high magnetic fields. Physica B 329–333, 1586–1587 (2003)

    Article  ADS  Google Scholar 

  28. Fortune, N. A. et al. High magnetic field corrections to resistance thermometers for low temperature calorimetry. Rev. Sci. Instrum. 71, 3825–3830 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Zieve, R. J. et al. Vortex avalanches at one thousandth the superconducting transition temperature. Phys. Rev. B 53, 11849–11854 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Mola, M. M., Hill, S., Qualls, J. S. & Brooks, J. S. Magneto-thermal instabilities in an organic superconductor. Int. J. Mod. Phys. B 15, 3353–3356 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. L. Sarrao for providing the samples, C. C. Agosta for discussions, V. Williams, D. McIntosh, J. Farrell and J. Kosakowski for technical assistance, and N. Malkovich for the Parmax(R) 1200 used in our heat capacity cell. This work was supported by the National Science Foundation, the State of Florida, and NHMFL Visiting Scientist and In-House Research Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Radovan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radovan, H., Fortune, N., Murphy, T. et al. Magnetic enhancement of superconductivity from electron spin domains. Nature 425, 51–55 (2003). https://doi.org/10.1038/nature01842

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01842

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing