Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

On the scents of smell in the salamander

Abstract

Our sense of smell is based on a remarkable chemical-detection system that possesses high sensitivity, broad discriminability and plastic, yet stable, function. Understanding how olfactory stimuli translate into perception is a problem of daunting complexity. How do odour-coding events in single cells correlate with emergent properties from the ensemble, and with behaviour? For comprehensive descriptions of neural function, analysis must extend from examination of how elemental principles relate to the function of the whole. The tiger salamander has long been used as an experimental model in studies of olfaction, enabling general questions about olfactory function to be approached.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The optical illusion of the impossible triangle illustrates how reductionist dissection to component parts can, in some cases, fail to capture global properties of the whole.
Figure 2: The salamander olfactory pathway.
Figure 3: Attributes of salamander olfactory sensory neurons (OSNs).
Figure 4: Correlation of zonal distribution of defined receptor types with receptive fields, single units and distributed signals.
Figure 5: Schematic diagram of spatial and temporal combinatorial coding hypothesis assembled from many different data gathered from the salamander preparation, augmented with information from other preparations (for reviews, see refs 1618).

Similar content being viewed by others

References

  1. Warr, C., Clyne, P., de Bruyne, M., Kim, J. & Carlson, J. R. Olfaction in Drosophila : coding, genetics and e-genetics. Chem. Senses 26, 201–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Galizia, C. G., Sachse, S., Rappert, A. & Menzel, R. The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nature Neurosci. 2, 473–478 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Hildebrand, J. G. Analysis of chemical signals by nervous systems. Proc. Natl Acad. Sci. USA 92, 67–74 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laurent, G. et al. Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu. Rev. Neurosci. 24, 263–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Gelperin, A., Tank, D. W. & Tesauro, G. in Neural Models of Plasticity: Experimental and Theoretical Approaches (eds Byrne, J. H. & Berry, W. O.) 133–159 (Academic, 1989).

    Book  Google Scholar 

  6. Ache, B. W. in Smell and Taste in Health and Disease (eds Getchell, T. V., Bartoshuk, L. M., Doty, R. L. & Snow, J. B.) 3–18 (Raven, New York, 1991).

    Google Scholar 

  7. Mellon, D. Jr Convergence of multimodal sensory input onto higher-level neurons of the crayfish olfactory pathway. J. Neurophysiol. 84, 3043–3055 (2000).

    Article  PubMed  Google Scholar 

  8. Sengupta, P., Chou, J. H. & Bargmann, C. I. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899–909 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Van Houten, J. L., Yang, W. Q. & Bergeron, A. Chemosensory signal transduction in paramecium. J. Nutr. 130, 946S–949S (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Ngai, J., Dowling, M. M., Buck, L., Axel, R. & Chess, A. The family of genes encoding odorant receptors in the channel catfish. Cell 72, 657–666 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Restrepo, D., Boekhoff, I. & Breer, H. Rapid kinetic measurements of second messenger formation in olfactory cilia from channel catfish. Am. J. Physiol. 264, C906–C911 (1993).

  12. Nikonov, A. A. & Caprio, J. Electrophysiological evidence for a chemotopy of biologically relevant odors in the olfactory bulb of the channel catfish. J. Neurophysiol. 86, 1869–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Friedrich, R. W. & Korsching, S. I. Chemotopic, combinatorial, and noncombinatorial odorant representations in the olfactory bulb revealed using a voltage-sensitive transducer. J. Neurosci. 18, 9977–9988 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Revial, M. F., Sicard, G., Duchamp, A. & Holley, A. New studies on odour discrimination in the frog's olfactory receptor cells. I. Experimental results. Chem. Senses 7, 175–191 (1982).

    Article  CAS  Google Scholar 

  15. Getchell, T. V. Analysis of unitary spikes recorded extracellularly from frog olfactory receptor cells and axons. J. Physiol. (Lond.) 234, 533–551 (1973).

    Article  CAS  Google Scholar 

  16. Mori, K., Nagao, H. & Yoshihara, Y. The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Buck, L. B. Information coding in the vertebrate olfactory system. Annu. Rev. Neurosci. 19, 517–544 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Keller, A. et al. Functional organization of rat olfactory bulb glomeruli revealed by optical imaging. J. Neurosci. 18, 2602–2612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aroniadou-Anderjaska, V., Ennis, M. & Shipley, M. T. Dendrodendritic recurrent excitation in mitral cells of the rat olfactory bulb. J. Neurophysiol. 82, 489–494 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Wellis, D. P., Scott, J. W. & Harrison, T. A. Discrimination among odorants by single neurons of the rat olfactory bulb. J. Neurophysiol. 61, 1161–1177 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Johnson, B. A. & Leon, M. Modular representations of odorants in the glomerular layer of the rat olfactory bulb and the effects of stimulus concentration. J. Comp. Neurol. 422, 496–509 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Kauer, J. S. Salamander reference list (January 29, 2002) 〈http://www.neurosci.tufts.edu〉 (2002).

  24. Kauer, J. S. Response Properties of Single Olfactory Bulb Neurons Using Odor Stimulation of Small Nasal Areas in the Salamander. Thesis, Univ. Pennsylvania (1973).

    Google Scholar 

  25. Penrose, R. in Nature's Imagination: The Frontiers of Scientific Vision (ed. Cornwell, J.) 12–26 (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  26. Amoore, J. E. The sterochemical theory of olfaction. I. Identification of the seven primary odours. Proc. Sci. Sect. Toilet Goods Assoc. 37, 1–12 (1962).

    Google Scholar 

  27. Kauer, J. S. & White, J. Imaging and coding in the olfactory system. Annu. Rev. Neurosci. 24, 963–979 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Beets, M. G. J. The molecular parameters of olfactory response. Pharm. Rev. 22, 1–34 (1970).

    CAS  PubMed  Google Scholar 

  29. Polak, E. H. Multiple profile-multiple receptor site model for vertebrate olfaction. J. Theoret. Biol. 40, 469–484 (1973).

    Article  CAS  Google Scholar 

  30. Alkasab, T. K. et al. Characterizing complex chemosensors: information theoretic analysis of olfactory systems. Trends Neurosci. 22, 102–108 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Alkasab, T. K., White, J. & Kauer, J. S. A computational system for simulating and analyzing arrays of biological and artificial sensors. Chem. Senses 27, 261–275 (2002).

    Article  PubMed  Google Scholar 

  32. Lancet, D., Sadovsky, E. & Seidemann, E. Probability model for molecular recognition in biological receptor repertoires: significance to the olfactory system. Proc. Natl Acad. Sci. USA 90, 3715–3719 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stopfer, M., Bhagavan, S., Smith, B. H. & Laurent, G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70–74 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Touhara, K. et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc. Natl Acad. Sci. USA 96, 4040–4045 (1999). [Published erratum in Proc. Natl Acad. Sci. USA 97, 3782 (2000).]

    Article  ADS  Google Scholar 

  36. Duchamp-Viret, P. & Duchamp, A. Odor processing in the frog olfactory system. Prog. Neurobiol. 53, 561–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Firestein, S., Picco, C. & Menini, A. The relation between stimulus and response in olfactory receptor cells of the tiger salamander. J. Physiol. 468, 1–10 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Getchell, T. V. & Shepherd, G. M. Responses of olfactory receptor cells to step pulses of odour at different concentrations in the salamander. J. Physiol. (Lond.) 282, 521–540 (1978).

    Article  CAS  Google Scholar 

  39. Kauer, J. S. in Olfaction and Taste Vol. VII (ed. van der Starre, H.) 227–236 (IRL Press, London, 1980).

    Google Scholar 

  40. Hildebrand, J. G. & Shepherd, G. M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595–631 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Leinders-Zufall, T. et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405, 792–796 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Kaissling, K. E., Hildebrand, J. G. & Tumlinson, J. H. Pheromone receptor cells in the male moth Manduca sexta. Arch. Insect Biochem. Physiol. 10, 273–279 (1989).

    Article  CAS  Google Scholar 

  43. Adrian, E. D. Sensory messages and sensation. The response of the olfactory organ to different smells. Acta Physiol. Scand. 29, 5–14 (1953).

    Article  CAS  PubMed  Google Scholar 

  44. Gesteland, R. C., Lettvin, J. Y. & Pitts, W. H. Chemical transmission in the nose of the frog. J. Physiol. (Lond.) 181, 525–559 (1965).

    Article  CAS  Google Scholar 

  45. Maturana, H. R., Lettvin, J. Y., McCullogh, W. S. & Pitts, W. H. Anatomy and physiology of vision in the frog. J. Gen. Physiol. 43 (Suppl.), 129–175 (1960).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Graziadei, P. P. C. & Monti-Graziadei, G. A. in Handbook of Sensory Physiology Vol. 9 (ed. Jacobson, M.) 55–83 (Springer, New York, 1978).

    Google Scholar 

  47. Simmons, P. A. & Getchell, T. V. Neurogenesis in olfactory epithelium: loss and recovery of transepithelial voltage transients following olfactory nerve section. J. Neurophysiol. 45, 516–528 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. Herrick, C. J. The Brain of the Tiger Salamander (Univ. Chicago Press, Chicago, 1948).

  49. Malacinski, G. M. & Borland, S. J. The Indiana University axolotl colony 〈http://www.indiana.edu/~axolotl/〉 (2002).

  50. Voss, S. R. & Parichy, D. Salamander genome project 〈http://lamar.colostate.edu/~srvoss/SGP/index.shtml〉 (2002).

  51. Firestein, S. & Werblin, F. S. Odor-induced membrane currents in vertebrate olfactory receptor neurons. Science 244, 79–82 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Firestein, S., Zufall, F. & Shepherd, G. M. Single odor-sensitive channels in olfactory receptor neurons are also gated by cyclic nucleotides. J. Neurosci. 11, 3565–3572 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kauer, J. S. Response patterns of amphibian olfactory bulb neurones to odour stimulation. J. Physiol. (Lond.) 243, 695–716 (1974).

    Article  CAS  Google Scholar 

  54. Kauer, J. S. & Moulton, D. G. Responses of olfactory bulb neurones to odour stimulation of small nasal areas in the salamander. J. Physiol. (Lond.) 243, 717–737 (1974).

    Article  CAS  Google Scholar 

  55. Kauer, J. S. & Shepherd, G. M. Olfactory stimulation with controlled and monitored step pulses of odor. Brain Res. 85, 108–113 (1975).

    Article  CAS  PubMed  Google Scholar 

  56. Hamilton, K. A. & Kauer, J. S. Intracellular potentials of salamander mitral/tufted neurons in response to odor stimulation. Brain Res. 338, 181–185 (1985).

    Article  CAS  PubMed  Google Scholar 

  57. Wellis, D. P. & Kauer, J. S. GABAa and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb. J. Physiol. 469, 315–339 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao, H., Dibello, P., Carlson, J. & Firestein, S. PCR amplification of odor receptor cDNA from individual olfactory neurons in salamander. AChemS Abstr . (1994).

  59. Firestein, S., Shepherd, G. M. & Werblin, F. S. Time course of the membrane current underlying sensory transduction in salamander olfactory receptor neurones. J. Physiol. (Lond.) 430, 135–158 (1990).

    Article  CAS  Google Scholar 

  60. Kauer, J. S. Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature 331, 166–168 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Kauer, J. S., Neff, S. R., Hamilton, K. A. & Cinelli, A. R. in Olfaction as a Model System for Computational Neuroscience (eds Davis, J. & Eichenbaum, H.) 43–68 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  62. Cinelli, A. R., Hamilton, K. A. & Kauer, J. S. Salamander olfactory bulb neuronal activity observed by video-rate voltage-sensitive dye imaging. III. Spatio-temporal properties of responses evoked by odorant stimulation. J. Neurophysiol. 73, 2053–2071 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Cinelli, A. R. & Kauer, J. S. Salamander olfactory bulb neuronal activity observed by video-rate voltage-sensitive dye imaging. II. Spatio-temporal properties of responses evoked by electrical stimulation. J. Neurophysiol. 73, 2033–2052 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. White, J. & Kauer, J. S. Exploring olfactory population coding using an artificial olfactory system. Prog. Brain Res. 130, 191–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Spors, H. & Grinvald, A. Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron 34, 301–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Uchida, N., Takahashi, Y. K., Tanifuji, M. & Mori, K. Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nature Neurosci. 3, 1035–1043 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Rubin, B. D. & Katz, L. C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Meister, M. & Bonhoeffer, T. Tuning and topography in an odor map on the rat olfactory bulb. J. Neurosci. 21, 1351–1360 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kent, P. F. & Mozell, M. M. The recording of odorant-induced mucosal activity patterns with a voltage-sensitive dye. J. Neurophysiol. 68, 1804–1819 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Mason, J. R. & Stevens, D. A. Discrimination and generalization among reagent grade odorants by tiger salamanders (Ambystoma tigrinum). Physiol. Behav. 26, 647–653 (1981).

    Article  CAS  PubMed  Google Scholar 

  71. Dorries, K. M., White, J. & Kauer, J. S. Rapid classical conditioning of odor response in a physiological model for olfactory research, the tiger salamander. Chem. Senses 22, 277–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Dawley, E. M. in Chemical Signals in Vertebrates 4: Ecology, Evolution, and Comparative Biology (eds Duvall, D., Muller-Schwarze, D. & Silverstein, R. M.) 221–224 (Plenum, New York, 1986).

    Book  Google Scholar 

  73. Lindquist, S. B. & Bachmann, M. D. The role of visual and olfactory cues in the prey catching behavior of the tiger salamander, Ambystoma tigrinum. Copeia 1, 81–90 (1982).

    Article  Google Scholar 

  74. Leinders-Zufall, T., Greer, C. A., Shepherd, G. M. & Zufall, F. Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction. J. Neurosci. 18, 5630–5639 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lowe, G. & Gold, G. H. Contribution of the ciliary cyclic nucleotide-gated conductance to olfactory transduction in the salamander. J. Physiol. 462, 175–196 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kauer, J. S. Olfactory receptor cell staining using horseradish peroxidase. Anat. Rec. 200, 331–336 (1981).

    Article  CAS  PubMed  Google Scholar 

  77. Kauer, J. S. in Neurobiology of Taste and Smell (eds Finger, T. E. & Silver, W. L.) 205–231 (Wiley, New York, 1987).

    Google Scholar 

  78. Halasz, N. & Greer, C. A. Terminal arborizations of olfactory nerve fibers in the glomeruli of the olfactory bulb. J. Comp. Neurol. 337, 307–316 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Christensen, T. A. & White, J. in The Neurobiology of Taste and Smell (eds Finger, T. E., Silver, W. L. & Restrepo, D.) 197–228 (Wiley-Liss, New York, 2000).

    Google Scholar 

  80. Laurent, G. A systems perspective on early olfactory coding. Science 286, 723–728 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Rall, W. & Shepherd, G. M. Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in the olfactory bulb. J. Neurophysiol. 31, 884–915 (1968).

    Article  CAS  PubMed  Google Scholar 

  82. Freeman, W. J. & Baird, B. Relation of olfactory EEG to behavior: spatial analysis. Behav. Neurosci. 101, 393–408 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Freeman, W. J. The physiology of perception. Sci. Am. 264, 78–85 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. White, J., Hamilton, K. A., Neff, S. R. & Kauer, J. S. Emergent properties of odor information coding in a representational model of the salamander olfactory bulb. J. Neurosci. 12, 1772–1780 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Scott, J. W., Brierley, T. & Schmidt, F. H. Chemical determinants of the rat electro-olfactogram. J. Neurosci. 20, 4721–4731 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zou, Z., Horowitz, L. F., Montmayeur, J.-P., Snapper, S. & Buck, L. B. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 414, 173–179 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Slotnick, B. M., Bell, G. A., Panhuber, H. & Laing, D. G. Detection and discrimination of propionic acid after removal of its 2-DG identified major focus in the olfactory bulb: a psychophysical analysis. Brain Res. 762, 89–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Hudson, R. From molecule to mind: the role of experience in shaping olfactory function. J. Comp. Physiol. A 185, 297–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Kauer, J. S. Contributions of topography and parallel processing to odor coding in the vertebrate olfactory pathway. Trends Neurosci. 14, 79–85 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work described in this paper has been generously supported by grants from the NIH (NIDCD), the Office of Naval Research, and the Defense Advanced Research Projects Agency. The studies on the olfactory pathway arising from work in my laboratory have been carried out by many highly skilled, insightful colleagues, including K. Hamilton, A. Cinelli, M. Schwartz Levey, J. White, D. Wellis, K. Dorries, T. Bozza, J. Marchand, T. Alkasab and M.-C. Cheung. I thank B. Talamo and J. White for helpful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Kauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauer, J. On the scents of smell in the salamander. Nature 417, 336–342 (2002). https://doi.org/10.1038/417336a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/417336a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing