Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Context-enabled learning in the human visual system

Abstract

Training was found to improve the performance of humans on a variety of visual perceptual tasks1,2. However, the ability to detect small changes in the contrast of simple visual stimuli could not be improved by repetition3. Here we show that the performance of this basic task could be modified after the discrimination of the stimulus contrast was practised in the presence of similar laterally placed stimuli, suggesting a change in the local neuronal circuit involved in the task. On the basis of a combination of hebbian and anti-hebbian synaptic learning rules compatible with our results, we propose a mechanism of plasticity in the visual cortex that is enabled by a change in the context.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental conditions.
Figure 2: Changes in the contrast-discrimination curves.
Figure 3: The time course of the context-induced learning.
Figure 4: Putative synaptic mechanism and model simulations.

Similar content being viewed by others

References

  1. Sagi, D. & Tanne, D. Perceptual learning: learning to see. Curr. Opin. Neurobiol. 4, 155–159 (1994).

    Article  Google Scholar 

  2. Karni, A. The acquisition of perceptual and motor skills: a memory system in the adult human cortex. Brain Res. Cogn. Brain Res. 5, 39–48 (1996).

    Article  CAS  Google Scholar 

  3. Dorais, A. & Sagi, D. Contrast masking effects change with practice. Vision Res. 37, 1725–1733 (1997).

    Article  CAS  Google Scholar 

  4. Karni, A. & Sagi, D. Where practice makes perfect in texture discrimination-evidence from primary visual cortex plasticity. Proc. Natl Acad. Sci. USA 88, 4966–4970 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Polat, U. & Sagi, D. Spatial interactions in human vision: from near to far via experience-dependent cascades of connections. Proc. Natl Acad. Sci. USA 91, 1206–1209 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Fahle, M., Edelman, S. & Poggio, T. Fast perceptual learning in hyperacuity. Vision Res. 35, 3003–3013 (1995).

    Article  CAS  Google Scholar 

  7. Schoups, A., Vogels, R. & Orban, N. Q. G. Practicing orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    Article  ADS  CAS  Google Scholar 

  8. Crist, R. E., Li, W. & Gilbert, C. D. Learning to see: experience and attention in primary visual cortex. Nature Neurosci. 4, 519–425 (2001).

    Article  CAS  Google Scholar 

  9. Zenger, B. & Sagi, D. in Textbook on ‘Perceptual Learning’ (eds Fahle, M. & Poggio, T.) Ch. 10, 177–196 (MIT Press, Boston, 2002).

    Google Scholar 

  10. Boynton, G. M., Demb, J. B., Glover, G. H. & Heeger, D. J. Neuronal basis of contrast discrimination. Vision Res. 39, 257–269 (1999).

    Article  CAS  Google Scholar 

  11. Karni, A. & Sagi, D. The time course of learning a visual skill. Nature 365, 250–252 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Adini, Y., Sagi, D. & Tsodyks, M. Excitatory-inhibitory network in the visual cortex: psychophysical evidence. Proc. Natl Acad. Sci. USA 94, 10426–10431 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Legge, G. E. A power law for contrast discrimination. Vision Res. 21, 457–467 (1981).

    Article  CAS  Google Scholar 

  14. Marcelja, S. Mathematical description of the responses of simple cortical cells. J. Opt. Soc. Am. 70, 1297–1300 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Pollen, D. A. & Romer, S. F. Visual cortical neurons as localized spatial frequency filters. IRRR Trans. Syst. Man Cybern. SMC-13, 907–916 (1983).

    Article  Google Scholar 

  16. Adini, Y. & Sagi, D. Recurrent networks in human visual cortex: psychophysical evidence. J. Opt. Soc. Am. A 18, 2228–2236 (2001).

    Article  ADS  CAS  Google Scholar 

  17. Zenger-Landolt, B. & Koch, C. Flanker effects in peripheral contrast discrimination—psychophysics and modeling. Vision Res. 41, 3663–3675 (2001).

    Article  CAS  Google Scholar 

  18. Wilson, H. R. & Humanski, R. Spatial frequency adaptation and contrast gain control. Vision Res. 33, 1133–1149 (1993).

    Article  CAS  Google Scholar 

  19. Foley, J. M. Human luminance pattern-vision mechanisms: Masking experiments require a new model. J. Opt. Soc. Am. A 11, 1710–1719 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Senn, W., Markram, H. & Tsodyks, M. An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neur. Computat. 13, 35–67 (2001).

    Article  CAS  Google Scholar 

  21. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  Google Scholar 

  22. Bell, C. C., Han, V. Z., Sugawara, Y. & Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278–281 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    Article  CAS  Google Scholar 

  24. Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nature Neurosci. 3, 1178–1183 (2000).

    Article  CAS  Google Scholar 

  25. Somers, D. C. et al. A local circuit approach to understanding integration of long-range inputs in primary visual cortex. Cereb. Cortex 8, 204–217 (1998).

    Article  CAS  Google Scholar 

  26. Walker, G. A., Ohzawa, I. & Freeman, R. D. Suppression outside the classical cortical receptive field. Vis. Neurosci. 17, 369–379 (2000).

    Article  CAS  Google Scholar 

  27. Gabor, D. Theory of communication. J. Inst. Elect. Eng. (Lond.) 93, 429–457 (1946).

    Google Scholar 

  28. Wilson, H. R. & Cowan, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetic 13, 55–80 (1973).

    Article  CAS  Google Scholar 

  29. Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J. & McNaughton, B. L. Paradoxical effects of external modulation of inhibitory interneurons. J. Neurosci. 17, 4382–4388 (1997).

    Article  CAS  Google Scholar 

  30. Albrecht, D. G. & Hamilton, B. Striate cortex of monkey and cat: contrast response function. J. Neurophysiol. 48, 217–237 (1982).

    Article  CAS  Google Scholar 

  31. Naka, K. I. & Rushton, W. A. H. S-potentials from luminosity units in the retina of fish (cyprinidae). J. Physiol. Lond. 185, 587–599 (1966).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Ahissar, Y. Dudai and H. Markram for helpful comments on the manuscript. This research was supported by the Israeli Academy of Sciences, US-Israel Binational Foundation, the Office of Naval Research and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Sagi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adini, Y., Sagi, D. & Tsodyks, M. Context-enabled learning in the human visual system. Nature 415, 790–793 (2002). https://doi.org/10.1038/415790a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415790a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing