Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability

Abstract

Cohesion between sister chromatids is established during DNA replication and depends on a protein complex called cohesin1,2,3,4,5,6,7. At the metaphase–anaphase transition in the yeast Saccharomyces cerevisiae, the ESP1-encoded protease separin cleaves SCC1, a subunit of cohesin with a relative molecular mass of 63,000 (Mr 63K)8. The resulting 33K carboxy-terminal fragment of SCC1 bears an amino-terminal arginine—a destabilizing residue in the N-end rule9. Here we show that the SCC1 fragment is short-lived (t1/2 ≈ 2 min), being degraded by the ubiquitin/proteasome-dependent N-end rule pathway. Overexpression of a long-lived derivative of the SCC1 fragment is lethal. In ubr1Δ cells, which lack the N-end rule pathway9, we found a highly increased frequency of chromosome loss. The bulk of increased chromosome loss in ubr1Δ cells is caused by metabolic stabilization of the ESP1-produced SCC1 fragment. This fragment is the first physiological substrate of the N-end rule pathway that is targeted through its N-terminal residue. A number of yeast proteins bear putative cleavage sites for the ESP1 separin, suggesting other physiological substrates and functions of the N-end rule pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The SCC1 fragment is a substrate of the N-end rule pathway.
Figure 2: Effects of overexpressing SCC1 and its fragments in UBR1 and ubr1Δ cells.
Figure 3: Increased chromosome instability in ubr1Δ S. cerevisiae.

Similar content being viewed by others

References

  1. Nasmyth, K., Peters, J. M. & Uhlmann, F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288, 1379–1384 (2000).

    Article  ADS  CAS  Google Scholar 

  2. Koshland, D. & Guacci, V. Sister chromatid cohesion: the beginning of a long and beautiful relationship. Curr. Opin. Cell Biol. 12, 297–301 (2000).

    Article  CAS  Google Scholar 

  3. Yanagida, M. Cell cycle mechanisms of sister chromatid separation: roles of Cut1/separin and Cut2/securin. Genes Cells 5, 1–8 (2000).

    Article  CAS  Google Scholar 

  4. Hirano, T. Chromosome cohesion, condensation, and separation. Annu. Rev. Biochem. 69, 115–144 (2000).

    Article  CAS  Google Scholar 

  5. Dej, K. J. & Orr-Weaver, T. L. Separation anxiety at the centromere. Trends Cell Biol. 10, 392–399 (2000).

    Article  CAS  Google Scholar 

  6. Pidoux, A. L. & Allshire, R. C. Centromeres: getting a grip of chromosomes. Curr. Opin. Cell Biol. 12, 308–319 (2000).

    Article  CAS  Google Scholar 

  7. Biggins, S. & Murray, A. W. Sister chromatid cohesion in mitosis. Curr. Opin. Genet. Dev. 9, 230–236 (1999).

    Article  CAS  Google Scholar 

  8. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl Acad. Sci. USA 93, 12142–12149 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Uhlmann, F., Wernic, D., Poupart, M.-A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD-clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  Google Scholar 

  11. Varshavsky, A. The ubiquitin system. Trends Biochem. Sci. 22, 383–387 (1997).

    Article  CAS  Google Scholar 

  12. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 76, 425–479 (1998).

    Article  Google Scholar 

  13. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Suzuki, T. & Varshavsky, A. Degradation signals in the lysine-asparagine sequence space. EMBO J. 18, 6017–6026 (1999).

    Article  CAS  Google Scholar 

  15. Xie, Y. & Varshavsky, A. The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J. 18, 6832–6844 (1999).

    Article  CAS  Google Scholar 

  16. Turner, G. C., Du, F. & Varshavsky, A. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405, 579–583 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Varshavsky, A. Ubiquitin fusion technique and its descendants. Methods Enzymol. 327, 578–593 (2000).

    Article  CAS  Google Scholar 

  18. Turner, G. C. & Varshavsky, A. Detecting and measuring cotranslational protein degradation in vivo. Science 289, 2117–2120 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Spencer, F., Gerring, S. L., Connelly, C. & Hieter, P. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics 124, 237–249 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Buonomo, S. B. C. et al. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103, 387–398 (2000).

    Article  CAS  Google Scholar 

  21. Tomonaga, T. et al. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev. 14, 2757–2770 (2000).

    Article  CAS  Google Scholar 

  22. Mulder, L. C. F. & Muesing, M. A. Degradation of HIV-1 integrase by the N-end rule pathway. J. Biol. Chem. 275, 29749–29753 (2000).

    Article  CAS  Google Scholar 

  23. Sijts, A. J., Pilip, I. & Pamer, E. G. The Listeria monocytogenes-secreted p60 protein is an N-end rule substrate in the cytosol of infected cells. Implications for major histocompatibility complex class I antigen processing of bacterial proteins. J. Biol. Chem. 272, 19261–19268 (1997).

    Article  CAS  Google Scholar 

  24. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J.-M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).

    Article  CAS  Google Scholar 

  25. Ghislain, M., Dohmen, R. J., Levy, F. & Varshavsky, A. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO. J. 15, 4884–4899 (1996).

    Article  CAS  Google Scholar 

  26. Mumberg, D., Muller, R. & Funk, M. Regulatable promoters of Saccharomyces cerevisiae—comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22, 5767–5768 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to G. Turner, H.-R. Wang, F. Du, V. Ellison, A. Murray, D. Morgan, B. Stillman and P. Hieter for strains and plasmids. We thank M. Budd, W. Shuo and members of the Varshavsky laboratory, particularly F. Du and G. Turner, for helpful discussions. This work was supported by grants to A.V. from the NIH. H.R. is a Fellow of the Leukemia and Lymphoma Society. K.N. was supported by the Austrian Industrial Research Promotion Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Varshavsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, H., Uhlmann, F., Nasmyth, K. et al. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410, 955–959 (2001). https://doi.org/10.1038/35073627

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35073627

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing