Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

300-Myr-old magmatic CO2 in natural gas reservoirs of the west Texas Permian basin

Abstract

Except in regions of recent crustal extension1, the dominant origin of carbon dioxide in fluids in sedimentary basins has been assumed to be from crustal organic matter2 or mineral reactions3,4. Here we show, by contrast, that Rayleigh fractionation caused by partial degassing of a magma body can explain the CO2/3He ratios and δ13C(CO2) values observed in CO2-rich natural gases in the west Texas Val Verde basin and also the mantle 3He/22Ne ratios observed in other basin systems5. Regional changes in CO2/3He and CO2/CH4 ratios can be explained if the CO2 input pre-dates methane generation in the basin, which occurred about 280 Myr ago6. Uplift to the north of the Val Verde basin between 310 and 280 Myr ago6 appears to be the only tectonic event with appropriate timing and location to be the source of the magmatic CO2. Our identification of magmatic CO2 in a foreland basin indicates that the origin of CO2 in other mid-continent basin systems should be re-evaluated. Also, the inferred closed-system preservation of natural gas in a trapping structure for 300 Myr is far longer than the residence time predicted by diffusion models7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of the JM-Brown Bassett (JM-BB) natural gas field.
Figure 2: Plot of 3He/4He against CO2 content.
Figure 3: CO2/3He as a function of CO2 content.
Figure 4: Evolution of δC13(CO2) and CO2/3He calculated for the gas phase of a degassing magma body.

Similar content being viewed by others

References

  1. Sherwood Lollar, B., Ballentine, C. J. & O'Nions, R. K. The fate of mantle-derived carbon in a continental sedimentary basin: Integration of C/He relationships and stable isotope signatures. Geochim. Cosmochim. Acta 61, 2295– 2307 (1997).

    Article  ADS  Google Scholar 

  2. Kharaka, Y. K., Carothers, W. W. & Rosenbauer, R. J. Thermal decarboxylation of acetic acid: implications for origin of natural gas. Geochim. Cosmochim. Acta 47, 397–402 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Hutcheon, I. & Abercrombie, H. Carbon dioxide in clastic rocks and silicate hydrolysis. Geology 18, 541 –544 (1990).

    Article  ADS  Google Scholar 

  4. Schoell, M. & Cathles, L. M. High CO2 in natural gases as a late stage high temperature component in the evolution of petroleum systems. Abstr. Am. Chem. Soc. 215, U623 –U623 (1998).

    Google Scholar 

  5. Ballentine, C. J. Resolving the mantle He/Ne and crustal 21Ne/22Ne in well gases. Earth Planet. Sci. Lett. 152, 233–250 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Horak, R. L. Tectonic and hydrocarbon maturation history in the Permian basin. Oil Gas J. 83, 124–129 ( 1985).

    Google Scholar 

  7. Schlomer, S. & Krooss, B. M. Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks. Mar. Petrol. Geol. 14, 563–578 ( 1997).

    Article  Google Scholar 

  8. Krooss, B. M., Leythaeuser, D. & Schaefer, R. G. The quantification of diffusive hydrocarbon losses through cap rocks of natural gas reservoirs - a reevaluation. Am. Assoc. Petrol. Geol. 76, 403–406 (1992).

    Google Scholar 

  9. Caffee, M. W. et al. Primordial noble gases from the Earth's mantle: Identification of a primitive volatile component. Science 285, 2115–2118 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Jenden, P. D., Hilton, D. R., Kaplan, I. R. & Craig, H. Abiogenic hydrocarbons and mantle helium in oil and gas fields. Prof. Pap. US Geol. Surv. 1570, 31– 56 (1993).

    Google Scholar 

  11. Oxburgh, E. R., O'Nions, R. K. & Hill, R. I. Helium isotopes in sedimentary basins. Nature 324, 632–635 ( 1986).

    Article  ADS  CAS  Google Scholar 

  12. Trull, T. W. & Kurz, M. D. Experimental measurements of 3He and 4He mobility in olivine and clinopyroxene at magmatic temperatures. Geochim. Cosmochim. Acta 57, 1313–1324 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Marty, B. & Jambon, A. C/3He in volatile fluxes from the solid Earth: implications for carbon geodynamics. Earth Planet. Sci. Lett. 83, 16–26 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Trull, T., Nadeau, S., Pineau, F., Polve, M. & Javoy, M. C-He systematics in hotspot xenoliths: Implications for mantle carbon contents and carbon recycling. Earth Planet. Sci. Lett. 118, 43–64 ( 1993).

    Article  ADS  CAS  Google Scholar 

  15. Hilton, D. R., McMurtry, G. M. & Goff, F. Large variations in vent fluid CO2/3He ratios signal rapid changes in magma chemistry at Loihi seamount, Hawaii. Nature 396, 359– 362 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Burnard, P., Graham, D. & Turner, G. Vesicle-specific noble gas analysis of “popping rock”: Implications for primordial noble gases in earth. Science 276, 568–571 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  17. Schumaker, R. C. Paleozoic structure of the Central basin uplift and adjacent Delaware basin, West Texas. Bull. Am. Assoc. Petrol. Geol. 76, 1804–1824 (1992).

    Google Scholar 

  18. Ye, H., Royden, L., Burchfiel, C. & Schuepbach, M. Late Paleozoic deformation of interior North America: The Greater Ancestral Rocky Mountains. Bull. Am. Assoc. Petrol. Geol. 80, 1397–1432 (1996).

    Google Scholar 

  19. Montgomery, S. L. Val Verde Basin: Thrusted Strawn (Pennsylvanian) carbonate reservoirs, Pakenham field area. Bull. Am. Assoc. Petrol. Geol. 80, 987–998 (1996).

    CAS  Google Scholar 

  20. Ballentine, C. J., O'Nions, R. K., Oxburgh, E. R., Horvath, F. & Deak, J. Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet. Sci. Lett. 105, 229– 246 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Kennedy, B. M., Hiyagon, H. & Reynolds, J. H. Crustal neon: a striking uniformity. Earth Planet. Sci. Lett. 98, 277–286 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Sackett, W. M. & Chung, M. H. Experimental confirmation of the lack of carbon isotope exchange between methane and carbon oxides at high temperatures. Geochim. Cosmochim. Acta 43 (1979).

  23. Henry, C. D., Price, J. G. & James, E. W. Mid-Cenozoic stress evolution and magmatism in the southern Cordillera, Texas and Mexico. Transition from continental arc to intraplate extension. J. Geophys. Res. 96, 13545–13560 (1991).

    Article  ADS  Google Scholar 

  24. Ewing, T. E. in New Mexico Geological Society Guidebook, 44th Field Conf. (eds Love, D. W. et al.) 155–167 (New Mexico Geological Society, Socorro, 1993).

    Google Scholar 

  25. Griesshaber, E., O'Nions, R. K. & Oxburgh, E. R. Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, F. R. G. Chem. Geol. 99, 213–235 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Weinlich, F. H. et al. An active subcontinental mantle volatile system in the western Eger rift, Central Europe: Gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochim. Cosmochim. Acta 63, 3653–3671 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Kennedy, B. M. et al. Mantle fluids in the San Andreas fault system, California. Science 278, 1278–1281 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Javoy, M. & Pineau, F. The volatile record of a ‘popping’ rock from the Mid-Atlantic Ridge at 14°N: chemical and isotopic composition of gas trapped in vesicles. Earth Planet. Sci. Lett. 107, 598–611 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Mattey, D. P. Carbon-dioxide solubility and carbon isotope fractionation in basaltic melt. Geochim. Cosmochim. Acta 55, 3467– 3473 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Bottinga, Y. & Javoy, M. MORB degassing: bubble growth and ascent. Chem. Geol. 81, 255– 270 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Jenden and M. Laroche for discussions, and L. Price and B. Marty for comments and suggestions. This work was supported by the US Department of Energy, the Gas Research Institute project ‘Advanced stable isotope techniques’ and the ETH, Zürich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris J. Ballentine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballentine, C., Schoell, M., Coleman, D. et al. 300-Myr-old magmatic CO2 in natural gas reservoirs of the west Texas Permian basin. Nature 409, 327–331 (2001). https://doi.org/10.1038/35053046

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35053046

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing