Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

CD1-restricted T-cell responses and microbial infection

Abstract

CD1, a conserved family of major histocompatibility (MHC)-like glycoproteins in mammals, specializes in capturing lipid rather than peptide antigen for presentation to T lymphocytes. The principles and mechanisms of this newly discovered immune strategy differ markedly from those governing classical MHC–peptide presentation. They might be exploited for the design of new lipid-based microbial vaccines and adjuvants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The Mycobacterium tuberculosis cell envelope.
Figure 3: A comparison of the hydrophobicity of CD1d and H2-Kb antigen-binding grooves.
Figure 4: Cellular location of CD1a, CD1b, CD1c, CD1d and corresponding CD1-restricted T-cell subsets and lipid antigens.

Similar content being viewed by others

References

  1. Calabi, F., Jarvis, J. M., Martin, L. H. & Milstein, C. Two classes of CD1 genes. Eur. J. Immunol. 19, 285–292 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Porcelli, S. A. & Modlin, R. L. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids . Annu. Rev. Immunol. 17, 297– 329 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Beckman, E. M. et al. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372, 691– 694 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Moody, D. B. et al. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278, 283–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Sieling, P. A. et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227– 230 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Moody, D. B. et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404, 884–888 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Lee, R. E., Brennan, P. J. & Besra, G. S. Mycobacterium tuberculosis cell envelope. Curr. Top. Microbiol. Immunol. 215, 1– 27 (1996).

    CAS  PubMed  Google Scholar 

  8. Natori, T., Morita, M., Akimoto, K. & Koezuka, Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the sponge Agelas mauritianus . Tetrahedron 50, 2771– 2784 (1994).

    Article  CAS  Google Scholar 

  9. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29, 1667–1675 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  11. Castano, A. R. et al. Peptide binding and presentation by mouse CD1. Science 269, 223–226 ( 1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zeng, Z. H. et al. The crystal structure of murine CD1: an MHC-like fold with a large hydrophobic antigen binding groove. Science 277, 339–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Porcelli, S. A. & Brenner, M. B. Antigen presentation: mixing oil and water. Curr. Biol. 7, R508 –R511 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Naidenko, O. V. et al. Binding and antigen presentation of ceramide-containing glycolipids by soluble mouse and human CD1d molecules. J. Exp. Med. 190, 1069–1080 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joyce, S. et al. Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol . Science 279, 1541–1544 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ernst, W. A. et al. Molecular interaction of CD1b with lipoglycan antigens. Immunity 8, 331–340 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  18. Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα 14+ NK T lymphocytes. J. Immunol. 161, 3271–3281 ( 1998).

    CAS  PubMed  Google Scholar 

  19. Sugita, M. et al. Separate pathways for antigen presentation by CD1 molecules . Immunity 11, 743–752 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Schaible, U. E., Hagens, K., Fischer, K., Collins, H. L. & Kaufmann, S. H. Intersection of group I CD1 molecules and mycobacteria in different intracellular compartments of dendritic cells. J. Immunol. 164, 4843–4852 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Jackman, R. M. et al. The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity 8, 341–351 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  22. Chiu, Y. H. et al. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med. 189, 103–110 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Briken, V., Jackman, R. M., Watts, G. F. M., Rogers, R. A. & Porcelli, S. A. Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J. Exp. Med. 192, 281– 288 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sieling, P. A. et al. Evidence for human CD4 T cells in the CD1-restricted repertoire: derivation of mycobacteria-reactive T cells from leprosy lesions. J. Immunol. 164, 4790– 4796 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Bendelac, A., Rivera, M. N., Park, S.-H & Roark, J. H. Mouse CD1-specific NK1 T cells. Development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Stenger, S. et al. Differential effects of cytolytic T cell subsets on intracellular infection. Science 276, 1684– 1687 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Tatu, C., Ye, J., Arnold, L. W. & Clarke, S. H. Selection at multiple checkpoints focuses V(H)12 B cell differentiation toward a single B-1 cell specificity. J. Exp. Med. 190, 903–914 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Benedict, C. L. & Kearney, J. F. Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice. Immunity 10, 607 –617 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes . Science 268, 863–865 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Spada, F. M. et al. Self-recognition of CD1 by γ/δ T cells: implications for innate immunity. J. Exp. Med. 191, 937 –948 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park, S. H., Benlagha, K., Lee, D., Balish, E. & Bendelac, A. Unaltered phenotype, tissue distribution and function of Vα14(+) NKT cells in germ-free mice. Eur. J. Immunol. 30, 620–625 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  33. Schofield, L. et al. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283, 225–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Molano, A. et al. Cutting edge. The IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of glycosylphosphatidylinositols in NKT cell activation and anti-malarial responses. J. Immunol. 164, 5005–5009 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  35. Gumperz, J. E. et al. Murine CD1d-restricted T cell recognition of cellular lipids . Immunity 12, 211–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Burdin, N., Brossay, L. & Kronenberg, M. Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur. J. Immunol. 29, 2014–2025 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  37. Carnaud, C. et al. Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650 (1999).

    CAS  PubMed  Google Scholar 

  38. Kitamura, H. et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med. 189, 1121–1128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hammond, K. J. L. et al. α/β-T cell receptor (TCR) CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med. 187, 1047– 1056 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14- Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilson, S. B. et al. Extreme Th1 bias of invariant Vα24JαQ T cells in type I diabetes. Nature 391, 177– 181 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661– 668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cui, J. et al. Inhibition of T helper cell type 2 cell differentiation and immunoglobulin E response by ligand-activated Vα14 natural killer T cells. J. Exp. Med. 190, 783–792 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singh, N. et al. Cutting edge: activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J. Immunol. 163, 2373–2377 ( 1999).

  45. Shinkai, K. & Locksley, R. M. CD1, tuberculosis, and the evolution of major histocompatibility complex molecules. J. Exp. Med. 191, 907–914 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beldjord, K., Beldjord, C., Macintyre, E., Even, P. & Sigaux, F. Peripheral selection of V δ 1+ cells with restricted T cell receptor delta gene junctional repertoire in the peripheral blood of healthy donors. J. Exp. Med. 178, 121–127 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Besra, G. & Chatterjee, D. in Tuberculosis: Pathogenesis, Protection and Control. (ed. Bloom, B.) 285–306 (American Society for Microbiology, Washington, DC, 1994).

    Google Scholar 

  48. Almeida, I. C. et al. Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO J. 19, 1476–1485 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Balk, M. Bonneville, M. Ferguson, J.-J. Fournie, S. Joyce, S. Kaufmann, Y. Koezuka, H.R. MacDonald, I. Orme, S. Porcelli, L. Schofield, L. Teyton, C.-R. Wang and numerous other colleagues for helpful discussions and for sharing unpublished results; P. Brennan for permission to reproduce his model of the mycobacterial cell wall; members of our laboratory for stimulating discussions; H. Piper for help in the preparation of Fig. 2 ; and B. Jabri and P. Matzinger for critical review of the manuscript. This work was supported by grants from the NIH, American Cancer Society and Juvenile Diabetes Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SH., Bendelac, A. CD1-restricted T-cell responses and microbial infection. Nature 406, 788–792 (2000). https://doi.org/10.1038/35021233

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35021233

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing