Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Determining the ages of comets from the fraction of crystalline dust

Abstract

The timescale for the accretion of bodies in the disk surrounding a young star depends upon a number of assumptions, but there are few observational constraints. In our own Solar System, measurements of meteoritic components can provide information about the inner regions of the nebula, but not the outer parts. Observations of the evolution of more massive protostellar systems (Herbig Ae/Be stars) imply that significant changes occur in the physical properties of their dust with time1. The simplest explanation is that thermal annealing of the original, amorphous grains in the hot inner nebula slowly increases the fractional abundance of crystalline material over time. Crystalline dust is then transported outward, where it is incorporated into comets that serve as a long-term reservoir for dust disks, such as that surrounding Beta Pictoris. Here we show that when applied to our own Solar System, this process can explain observed variations in both the volatile and dusty components of comets, while also providing a natural indicator of a comet's mean formation age. Studies of comets with different dust contents can therefore be used to investigate the timescales of the early Solar System.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vapour pressures in the range 25–200 K for a selection of simple compounds based on refs 20 and 21.

Similar content being viewed by others

References

  1. Grady, C. A. et al. Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 613–638 (Univ. Arizona Press, Tucson, 1999).

    Google Scholar 

  2. Smith, B. A. & Terrile, R. J. A circumstellar disk around β Pictoris. Science 226, 1421– 1424 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Knacke, R. F. et al. The silicates in the disk of β Pictoris. Astrophys. J., 418, 440–450 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Campins, H. & Ryan, E. V. The identification of crystalline olivine in cometary silicates. Astrophys. J. 341, 1059–1066 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Ryan, E. V. & Campins, H. Comet Halley: Spatial and temporal variability of the silicate emission feature. Astron. J. 101, 695–701 (1991).

    Article  ADS  Google Scholar 

  6. Draine, B. T. & Lee, H. M. Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, 89–108 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Prinn, R. G. On neglect of non-linear momentum terms in solar nebula accretion disk models. Astrophys. J. 348, 725– 729 (1990).

    Article  ADS  Google Scholar 

  8. Stevenson, D. J. Chemical heterogeneity and imperfect mixing in the solar nebula. Astrophys. J. 348, 730–737 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Hallenbeck, S. L., Nuth, J. A. & Daukantas, P. L. Mid-infrared spectral evolution of amorphous magnesium silicate smokes annealed in vacuum: Comparison to cometary spectra. Icarus

  10. Hallenbeck, S. L., Nuth, J. A. & Nelson, R. N. Evolving optical properties of annealing silicate grains: From amorphous condensate to crystalline mineral. Astrophys. J. 535, 247–255 ( 2000).

    Article  ADS  CAS  Google Scholar 

  11. Hanner, M. H. The silicate material in comets. Space Sci. Rev. 90 , 99–108 (2000).

    Article  ADS  Google Scholar 

  12. Hanner, M. H., Lynch, D. K. & Russell, R. W. The 8–13 micron spectra of comets and the composition of silicate grains. Astrophys. J. 425, 274 –285 (1994).

    Article  ADS  Google Scholar 

  13. Woolum, D. S. & Cassen, P. Astronomical constraints on nebular temperatures: Implications for planetesimal formation. Meteor. Planet. Sci. 34, 897–907 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Prinn, R. G. & Fegley, B. in Origin and Evolution of Planetary and Satellite Atmospheres (eds Atreya, S. K., Pollock, J. B. & Matthews,M. S.) 78–136 (Univ. Arizona Press, Tucson, 1989).

    Google Scholar 

  15. Fegley, B. in The Chemistry of Life's Origins (eds Greenberg, J. M., Mendoza-Gomez, C. X. & Pirronello, V.) 75–147 (Kluwer, Dordrecht, 1993).

    Book  Google Scholar 

  16. Gerakines, P. A. et al.Observations of solid carbon dioxide in molecular clouds with the Infrared Space Observatory. Astrophys. J. 522, 357–377 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Weidenschilling, S. J. The origin of comets in the solar nebula: a unified model. Icarus 127, 290–306 ( 1997).

    Article  ADS  Google Scholar 

  18. A’Hearn, M. F., Millis, R. L., Schleicher, D. G., Osip, D. J. & Birth, P. V. The ensemble properties of comets: results from narrowband photometry of 85 comets, 1976–1992. Icarus 118, 223–270 ( 1995).

    Article  ADS  Google Scholar 

  19. Mumma, M., Weissman, P. & Stern, S. A. in Protostars and Planets III (eds Levy, E. & Lunine, J.) 1177–1252 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  20. Brown, G. N. & Ziegler, W. T. in Advances in Cryogenic Engineering Vol. 25 (eds Timmerhaus, K. D. & Snyder, H. A.) 662–670 (Plenum, New York, 1980).

    Book  Google Scholar 

  21. Lide, David R. Lide (ed.) CRC Handbook of Chemistry and Physics: 75th edn Section 6, 66–76 (CRC Press, Boca Raton, 1994 ).

    Google Scholar 

Download references

Acknowledgements

H.G.M.H. & G.K. acknowledge support for this work received under the NAS/NRC Resident Research Associate Program at GSFC. The authors also thank F. Ferguson, D. Fixsen and J. Allen for discussion and technical help with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Nuth III.

Additional information

Astrochemistry Branch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuth, J., Hill, H. & Kletetschka, G. Determining the ages of comets from the fraction of crystalline dust . Nature 406, 275–276 (2000). https://doi.org/10.1038/35018516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018516

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing