Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trapping an atom with single photons

Abstract

The creation of a photon–atom bound state was first envisaged for the case of an atom in a long-lived excited state inside a high-quality microwave cavity1,2. In practice, however, light forces in the microwave domain are insufficient to support an atom against gravity. Although optical photons can provide forces of the required magnitude, atomic decay rates and cavity losses are larger too, and so the atom–cavity system must be continually excited by an external laser3,4. Such an approach also permits continuous observation of the atom's position, by monitoring the light transmitted through the cavity5,6,7,8,9. The dual role of photons in this system distinguishes it from other single-atom experiments such as those using magneto-optical traps10,11,12, ion traps13,14 or a far-off-resonance optical trap15. Here we report high-finesse optical cavity experiments in which the change in transmission induced by a single slow atom approaching the cavity triggers an external feedback switch which traps the atom in a light field containing about one photon on average. The oscillatory motion of the trapped atom induces oscillations in the transmitted light intensity; we attribute periodic structure in intensity-correlation-function data to ‘long-distance’ flights of the atom between different anti-nodes of the standing-wave in the cavity. The system should facilitate investigations of the dynamics of single quantum objects and may find future applications in quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atom–cavity system.
Figure 2: Experimental trajectories.
Figure 3: Atomic trajectory calculated with a quantum jump Monte Carlo method.
Figure 4: Short-time structure.

Similar content being viewed by others

References

  1. Haroche, S., Brune, M. & Raimond, J. M. Trapping atoms by the vacuum field in a cavity. Europhys. Lett. 14, 19–24 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Englert, B.-G., Schwinger, J., Barut, A. O. & Scully, M. O. Reflecting slow atoms from a micromaser field. Europhys. Lett. 14, 25–31 ( 1991).

    Article  ADS  CAS  Google Scholar 

  3. Hood, C. J., Chapman, M. S., Lynn, T. W. & Kimble, H. J. Real-time cavity QED with single atoms. Phys. Rev. Lett. 80, 4157–4160 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Münstermann, P., Fischer, T., Maunz, P., Pinkse, P. W. H. & Rempe, G. Dynamics of single-atom motion observed in a high-finesse cavity. Phys. Rev. Lett. 82, 3791– 3794 (1999).

    Article  ADS  Google Scholar 

  5. Rempe, G. One atom in an optical cavity: Spatial resolution beyond the standard diffraction limit. Appl. Phys. B 60, 233– 237 (1995).

    Article  ADS  Google Scholar 

  6. Quadt, R., Collett, M. & Walls, D. F. Measurement of atomic motion in a standing light field by homodyne detection. Phys. Rev. Lett. 74, 351–354 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Mabuchi, H., Turchette, Q. A., Chapman, M. S. & Kimble, H. J. Real-time detection of individual atoms falling through a high-finesse optical cavity. Opt. Lett. 21, 1393– 1395 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Münstermann, P., Fischer, T., Pinkse, P. W. H. & Rempe, G. Single slow atoms from an atomic fountain observed in a high-finesse optical cavity. Opt. Commun. 159, 63– 67 (1999).

    Article  ADS  Google Scholar 

  9. Mabuchi, H., Ye, J. & Kimble, H. J. Full observation of single-atom dynamics in cavity QED. Appl. Phys. B 68, 1095– 1108 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Hu, Z. & Kimble, H. J. Observation of a single atom in a magneto-optical trap. Opt. Lett. 19, 1888 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Ruschewitz, F., Bettermann, D., Peng, J. L. & Ertmer, W. Statistical investigations on single trapped neutral atoms. Europhys. Lett. 34, 651–656 ( 1996).

    Article  ADS  CAS  Google Scholar 

  12. Haubrich, D. et al. Observation of individual neutral atoms in magnetic and magneto-optical traps. Europhys. Lett. 34, 663– 668 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Neuhauser, W., Hohenstatt, M., Toschek, P. E. & Dehmelt, H. Localized visible Ba+ mono-ion oscillator. Phys. Rev. A 22, 1137–1140 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Wineland, D. J. & Itano, W. M. Spectroscopy of a single Mg+ ion. Phys. Lett. A 82 , 75–78 (1981).

    Article  ADS  Google Scholar 

  15. Ye, Y., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Berman, P. R. (ed.) Cavity Quantum Electrodynamics (Academic, San Diego, 1994).

    Google Scholar 

  17. Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H. & Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974–4977 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Hechenblaikner, G., Gangl, M., Horak, P. & Ritsch, H. Cooling an atom in a weakly driven high-Q cavity. Phys. Rev. A 58, 3030–3042 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Carmichael, H. An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993).

    MATH  Google Scholar 

  20. Mølmer, K., Castin, Y. & Dalibard, J. Monte Carlo wave-function method in quantum optics. J. Opt. Soc. Am. B 10, 524– 538 (1993).

    Article  ADS  Google Scholar 

  21. Mancini, S., Vitali, D. & Tombesi, P. Stochastic phase space localization for a single trapped particle. Phys. Rev. A (in the press).

  22. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Law, C. K. & Eberly, J. H. Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76, 1055–1058 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Law, C. K. & Kimble, H. J. Deterministic generation of a bit-stream of single-photon pulses. J. Mod. Opt. 44 , 2067–2074 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Kuhn, A., Hennrich, M., Bondo, T. & Rempe, G. Controlled generation of single photons from a strongly coupled atom-cavity system. Appl. Phys. B 69, 373–377 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Münstermann for important contributions to the experiment. The experiments were performed at the University of Konstanz. Funding by the Deutsche Forschungsgemeinschaft, the Optikzentrum Konstanz and the TMR network ‘Microlasers and Cavity QED' is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rempe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinkse, P., Fischer, T., Maunz, P. et al. Trapping an atom with single photons. Nature 404, 365–368 (2000). https://doi.org/10.1038/35006006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35006006

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing