Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional characterization of a potassium-selective prokaryotic glutamate receptor

Abstract

Ion channels are molecular pores that facilitate the passage of ions across cell membranes and participate in a range of biological processes, from excitatory signal transmission in the mammalian nervous system to the modulation of swimming behaviour in the protozoan Paramecium1. Two particularly important families of ion channels are ionotropic glutamate receptors (GluRs)2 and potassium channels3,4. GluRs are permeable to Na+, K+ and Ca2+, are gated by glutamate, and have previously been found only in eukaryotes2. In contrast, potassium channels are selective for K+, are gated by a range of stimuli, and are found in both prokaryotes and eukaryotes3,4. Here we report the discovery and functional characterization of GluR0 from Synechocystis PCC 6803, which is the first GluR found in a prokaryote. GluR0 binds glutamate, forms potassium-selective channels and is related in amino-acid sequence to both eukaryotic GluRs and potassium channels. On the basis of amino-acid sequence and functional relationships between GluR0 and eukaryotic GluRs, we propose that a prokaryotic GluR was the precursor to eukaryotic GluRs. GluR0 provides evidence for the missing link between potassium channels and GluRs, and we suggest that their ion channels have a similar architecture, that GluRs are tetramers and that the gating mechanisms of GluRs and potassium channels have some essential features in common.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GluR0 is related to eukaryotic GluRs (eGluRs) and to potassium channels.
Figure 2: GluR0 binds L-glutamate, L-glutamine and other amino acids.
Figure 3: GluR0-mediated ion-channel responses.
Figure 4: GluR0 gates a K+-selective Ba2+-sensitive conductance.

References

  1. Hille,B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 1992).

    Google Scholar 

  2. Dingledine,R., Borges,K., Bowie,D. & Traynelis,S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  Google Scholar 

  3. Coetzee,W. A. et al. Molecular diversity of K+ channels. Ann. NY Acad. Sci. 868, 233–285 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Yellen,G. The bacterial K+ channel structure and its implications for neuronal channels. Curr. Opin. Neurobiol. 9, 267–273 (1999).

    Article  CAS  Google Scholar 

  5. Altschul,S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  6. Kaneko,T. et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109–136 (1996).

    Article  CAS  Google Scholar 

  7. Lomeli,H. et al. The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett. 315, 318–322 (1993).

    Article  CAS  Google Scholar 

  8. Lam,H. M. et al. Glutamate-receptor genes in plants. Nature 396, 125–126 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Hollmann,M., O'Shea-Greenfield,A., Rogers,S. W. & Heinemann,S. Cloning by functional expression of a member of the glutamate receptor family. Nature 342, 643–648 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Keinänen,K. et al. A family of AMPA-selective glutamate receptors. Science 249, 556–560 (1990).

    Article  ADS  Google Scholar 

  11. Stern-Bach,Y. et al. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345–1357 (1994).

    Article  CAS  Google Scholar 

  12. Kuusinen,A., Arvola,M. & Keinänen,K. Molecular dissection of the agonist binding site of an AMPA receptor. EMBO J. 14, 6327–6332 (1995).

    Article  CAS  Google Scholar 

  13. Armstrong,N., Sun,Y., Chen,G.-Q. & Gouaux,E. Structure of a glutamate receptor ligand binding core in complex with kainate. Nature 395, 913–917 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Lampinen,M., Pentikäinen,O., Johnson,M. S. & Keinänen,K. AMPA receptors and bacterial periplasmic amino acid-binding proteins share the ionic mechanism of ligand recognition. EMBO J. 17, 4704–4711 (1998).

    Article  CAS  Google Scholar 

  15. Baro,D. J., Cole,C. L. & Harris-Warrick,R. M. The lobster shaw gene: cloning, sequence analysis and comparison to fly shaw. Gene 170, 267–270 (1996).

    Article  CAS  Google Scholar 

  16. Schrempf,H. et al. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 14, 5170–5178 (1995).

    Article  CAS  Google Scholar 

  17. Doyle,D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Perozo,E., Cortes,D. M. & Cuello,L. G. Structural rearrangements underlying K+-channel activation gating. Science 285, 73–78 (1999).

    Article  CAS  Google Scholar 

  19. Zuo,J. et al. Neurodegeneration in Lurcher mice caused by mutation in δ2 glutamate receptor gene. Nature 388, 769–773 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Wo,Z. G. & Oswald,R. E. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 18, 161–168 (1995).

    Article  CAS  Google Scholar 

  21. Wood,M. W., VanDongen,H. M. & VanDongen,A. M. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc. Natl Acad. Sci. USA 92, 4882–4886 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Chen,G. Q. & Gouaux,E. Overexpression of a glutamate receptor (GluR2) ligand binding domain in Escherichia coli: Application of a novel protein folding screen. Proc. Natl Acad. Sci. USA 94, 13431–13436 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Heginbotham,L., LeMasurier,M., Kolmakova-Partensky,L. & Miller,C. Single Streptomyces lividans K+ channels. Functional asymmetries and sideness of proton activation. J. Gen. Physiol. 114, 551–559 (1999).

    Article  CAS  Google Scholar 

  24. Wada,K. et al. Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature 342, 684–689 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Liman,E. R., Tytgat,J. & Hess,P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9, 861–871 (1992).

    Article  CAS  Google Scholar 

  26. Keinänen,K., Köhr,G., Seeburg,P. H., Laukkanen,M.-L. & Oker-Blom,C. High-level expression of functional glutamate receptor channels in insect cells. Bio/Technology 12, 802–806 (1994).

    PubMed  Google Scholar 

  27. Stern-Bach,Y., Russo,S., Neuman,M. & Rosenmund,C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21, 907–918 (1998).

    Article  CAS  Google Scholar 

  28. Schreibmayer,W., Lester,H. A. & Dascal,N. Voltage clamping of Xenopus oocytes utilizing agarose-cushion electrodes. Pflügers Arch. 426, 453–458 (1994).

    Article  CAS  Google Scholar 

  29. Chen,C. & Okayama,H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  30. Vyklicky,L., Benveniste,M. & Mayer,M. L. Modulation of N-methyl-D-aspartic acid receptor desensitization by glycine in mouse cultured hippocampal neurones. J. Physiol. (Lond.) 428, 313–331 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. J. Vermaas for the Synechocystis PCC 6803 genomic DNA; E. Kandel for encouragement; R. MacKinnon, D. Bryant and B. Ramachandran for comments; the laboratory of D. Hirsh for the use of equipment; and C. Glasser for technical assistance. This work was supported by the Alfred P. Sloan Foundation (E.G.), the NSF Young Investigator Program (E.G.), the Klingenstein Foundation (E.G.), the National Alliance for Research on Schizophrenia and Depression (E.G.) and the NIH (E.G., M.L.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gouaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GQ., Cui, C., Mayer, M. et al. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999). https://doi.org/10.1038/45568

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45568

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing