Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predicted signatures of rotating Bose–Einstein condensates

Abstract

Superfluids are distinguished from normal fluids by their peculiar response1 to rotation: circulating flow in superfluid helium2,3, a strongly coupled Bose liquid, can appear only as quantized vortices4,5,6. The newly created Bose–Einstein condensates7,9—clouds of millions of ultracold, weakly interacting alkali-metal atoms that occupy a single quantum state—offer the possibility of investigating superfluidity in the weak-coupling regime. An outstanding question is whether Bose–Einstein condensates exhibit a mesoscopic quantum analogue of the macroscopic vortices in superfluids, and what its experimental signature would be. Here we report calculations of the low-energy states of a rotating, weakly interacting Bose gas. We find a succession of transitions between stable vortex patterns of differing symmetries that are in general qualitative agreement with observations5 of rotating superfluid helium, a strong-coupling superfluid. Counterintuitively, the angular momentum per particle is not quantized. Some angular momenta are forbidden, corresponding to asymmetrical unstable states that provide a physical mechanism for the entry of vorticity into the condensate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rotating condensates.
Figure 2: Angular momentum versus angular velocity.
Figure 3: Mechanism for vortex entry.

Similar content being viewed by others

References

  1. Leggett, A. J. in Low Temperature Physics (eds Hoch, M. J. R. & Lemmer, R. H.) 1–92 (Springer, Berlin, (1992)).

    Google Scholar 

  2. Onsager, L. Nuovo Cimento 6, 249–250 (1949).

    Google Scholar 

  3. Feynman, R. F. in Progress in Law Temperature Physics Vol. I(ed. Gorter, C. J.) 17–53 (North Holland, Amsterdam, (1955)).

    Book  Google Scholar 

  4. Vinen, W. F. Single quanta of circulation in helium II. Proc. R. Soc. Lond. A 260, 218–236 (1961).

    Article  ADS  CAS  Google Scholar 

  5. Yarmchuk, E. J., Gordon, M. J. V. & Packard, R. E. Observation of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214–217 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Ruutu, V. M. H. et al. Vortex formation in neutron-irradiated superfluid 3He as an analogue for cosmological defect formation. Nature 382, 334–336 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Anderson, M. H., Ensher, J. R., Matthews, M. R., Weiman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose-Einstein condensation of litium: observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Inouye, S. et al. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature 392, 151–154 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Jin, D. S., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Collective excitations of a Bose-Einstein condensate in a dilute gas. Phys. Rev. Lett. 77, 420–423 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Mewes, M. O. et al. Collective excitations of a Bose-Einstein condensate in a magnetic trap. Phys. Rev. Lett. 77, 988–991 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Marzlin, K., Zhang, W. & Wright, E. M. Vortex coupler for atomic Bose-Einstein condensates. Phys. Rev. Lett. 79, 4728–4731 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Dum, R. & Castin, Y. Creation of dark solitons and vortices in Bose-Einstein condensates. Phys. Rev. Lett. 80, 2972–2975 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Landau, L. D. & Lifshitz, E. M. Statistical Physics 3rd edn (Pergamon, Oxford, (1980)).

    Google Scholar 

  16. Baym, G. & Pethick, C. J. Ground-state properties of magnetically trapped Bose-condensed rubidium gas. Phys. Rev. Lett. 76, 5–8 (1996).

    Article  ADS  Google Scholar 

  17. Dalfovo, F. & Stringari, S. Bosons in anisotropic traps: ground state and vortices. Phys. Rev. A 53, 2477–2485 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Wilkin, N. K., Gunn, J. M. F. & Smith, R. A. Do attractive bosons condense? Phys. Rev. Lett. 80, 2265–2268 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Hess, G. B. Angular momentum of superfluid helium in a rotating cylinder. Phys. Rev. 161, 189–193 (1967).

    Article  ADS  CAS  Google Scholar 

  20. Hall, H. E. On the rotation of liquid helium II. Adv. Phys. 9, 89–146 (1960).

    Article  ADS  CAS  Google Scholar 

  21. Campbell, L. J. & Ziff, R. M. Vortex patterns and energies in a rotating superfluid. Phys. Rev. B 20, 1886–1902 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Rokhsar, D. S. Vortex stability and persistent currents in trapped Bose gases. Phys. Rev. Lett. 79, 2164–2167 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Rokhsar, D. S. Dilute Bose gas in a torus: vortices and persistent currents.Preprint cond-mat/9709212 at 〈http://xxx.lanl.gov〉 ((1997)).

  24. Singh, K. G. & Rokhsar, D. S. Collective excitations of a confined Bose condensate. Phys. Rev. Lett. 77, 1667–1670 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Edwards, M. et al. Collective excitations of atomic Bose-Einstein condensates. Phys. Rev. Lett. 77, 1671–1674 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Stringari, S. Collective excitations of a trapped Bose-condensed gas. Phys. Rev. Lett. 77, 2360–2363 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Mewes, M. O. et al. Bose-Einstein condensation in a tightly confining dc magnetic trap. Phys. Rev. Lett. 77, 416–419 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. C. Davis, A. L. Fetter, R. E. Packard and D. P. Arovas for comments on the manuscript, and the Institute for Theoretical Physics at Santa Barbara for its hospitality while this work was being completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Rokhsar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butts, D., Rokhsar, D. Predicted signatures of rotating Bose–Einstein condensates. Nature 397, 327–329 (1999). https://doi.org/10.1038/16865

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16865

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing