Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum non-demolition measurements in optics

Abstract

Quantum non-demolition measurements are designed to circumvent the limitations imposed by Heisenberg's uncertainty principle when performing repeated measurements of quantum states. Recent progress in quantum optics has enabled the experimental realization of quantum non-demolition measurements of the photon flux of a light beam. This achievement bears on fundamental issues about the ultimate sensitivity of measurements, and may open the way for applications such as noise-free information tapping in optical telecommunications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simple examples of quantum measurements.
Figure 2: Measurement scheme via cross-Kerr effect.
Figure 3: The different properties used to characterize a measurement device.
Figure 4: Measurement scheme using pulsed optical parametric amplifier with atype-II phase-matched χ(2) crystal.

Similar content being viewed by others

References

  1. Wheeler, J. A. & Zurek, W. H. (eds) Quantum Theory and Measurement (Princeton Univ. Press, Princeton, NJ, (1983)).

  2. Braginsky, V. B. & Vorontsov, Y. I. Quantum-mechanical limitations in macroscopic experiments and modern experimental technique. Usp. Fiz. Nauk 114, 41–53 (1974) [Sov. Phys. Usp. 17, 644–650 (1975)].

    Google Scholar 

  3. Braginsky, V. B., Vorontsov, Y. I. & Khalili, F. Y. Quantum singularities of a ponderomotive meter of electromagnetic energy. Zh. Eksp. Teor. Fiz. 73, 1340–1343 (1977) [Sov. Phys. JETP 46, 705–706 (1977)].

    Google Scholar 

  4. Thorne, K. S., Drever, R. W. P., Caves, C. M., Zimmermann, M. & Sandberg, V. D. Quantum nondemolition measurements of harmonic oscillators. Phys. Rev. Lett. 40, 667–671 (1978).

    Article  ADS  Google Scholar 

  5. Unruh, W. G. Quantum nondemolition and gravity-wave detection. Phys. Rev. B 19, 2888–2896 (1979).

    ADS  Google Scholar 

  6. Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D. & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principles. Rev. Mod. Phys. 52, 341–392 (1980).

    Article  ADS  Google Scholar 

  7. Braginsky, V. B., Vorontsov, Y. L. & Thorne, K. S. Quantum nondemolition measurements. Science 209, 547–557 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (ed. Thorne, K. S.) (Cambridge Univ. Press, Cambridge, (1992)).

    Book  Google Scholar 

  9. Brillet, A., Damour, T. & Tourenc, P. Introduction to gravitational wave research. Ann. Phys. Fr. 10, 201–218 (1985).

    Article  ADS  Google Scholar 

  10. Brillet, A. Interferometric gravitational wave antennae. Ann. Phys. Fr. 10, 219–226 (1985).

    Article  ADS  Google Scholar 

  11. Weber, J. Gravitational-wave-detector events. Phys. Rev. Lett. 20, 1307–1308 (1968).

    Article  ADS  Google Scholar 

  12. Bocko, M. F. & Onofrio, R. On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress. Rev. Mod. Phys. 68, 755–799 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Yuen, H. P. Two-photon coherent states of the radiation field. Phys. Rev. A 13, 2226–2243 (1976).

    Article  ADS  Google Scholar 

  14. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  15. Walls, D. F. Squeezed states of light. Nature 306 141–146 (1983).

    Article  ADS  Google Scholar 

  16. Milburn, G. J. & Walls, D. F. Quantum nondemolition measurements via quadratic coupling. Phys. Rev. A 28, 2065–2070 (1983).

    Article  ADS  Google Scholar 

  17. Yurke, B. Optical back-action-evading amplifiers. J. Opt. Soc. Am. B 2, 732–738 (1985).

    Article  ADS  Google Scholar 

  18. Imoto, N., Haus, H. A. & Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Squeezed light. J. Opt. Soc. Am. B 4 (suppl.), 1449–1741 (1987).

  20. Squeezed light. J. Mod. Opt. 34, 709–1020 (1987).

  21. Roch, J. F., Roger, G., Grangier, P., Courty, J. M. & Reynaud, S. Quantum non-demolition measurements in optics: a review and some recent experimental results. Applied Phys. B 55, 291–297 (1992).

    Article  ADS  Google Scholar 

  22. Poizat, J. P. & Grangier, P. Experimental realization of a quantum optical tap. Phys. Rev. Lett. 70, 271–274 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Pereira, S. F., Ou, Z. Y. & Kimble, H. J. Backaction evading measurements for quantum nondemolition detection and quantum optical tapping. Phys. Rev. Lett. 72, 214–217 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Bencheikh, K., Levenson, J. A., Grangier, P. & Lopez, O. Quantum nondemolition demonstration via repeated backaction evading measurements. Phys. Rev. Lett. 75, 3422–3425 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Quantum nondemolition measurements. Appl. Phys. B 64 (suppl.), 123–272 (1997).

  26. Roch, J.-F. et al. Quantum nondemolition measurements using cold atoms. Phys. Rev. Lett. 78, 634–637 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Bruckmeier, R., Hansen, H. & Schiller, S. Repeated quantum nondemolition measurements of continuous optical waves. Phys. Rev. Lett. 79, 1463–1466 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Einstein, A., Podolosky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    Article  ADS  CAS  Google Scholar 

  29. Bohr, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696–702 (1935).

    Article  ADS  CAS  Google Scholar 

  30. Imoto, N. & Saito, S. Quantum nondemolition measurement of photon number in a lossy optical Kerr medium. Phys. Rev. A 39, 675–682 (1989).

    Article  ADS  CAS  Google Scholar 

  31. Holland, M. J., Collett, M. J., Walls, D. F. & Levenson, M. D. Nonideal quantum nondemolition measurements. Phys. Rev. A 42, 2995–3005 (1990).

    Article  ADS  CAS  Google Scholar 

  32. Grangier, P., Courty, J. M. & Reynaud, S. Characterization of nonideal quantum nondemolition measurements. Opt. Commun. 89, 99–106 (1992).

    Article  ADS  Google Scholar 

  33. Poizat, J. P., Roch, J. F. & Grangier, P. Characterization of quantum nondemolition measurements in optics. Ann. Phys. Fr. 19, 265–297 (1994).

    Article  ADS  Google Scholar 

  34. Levenson, M. D., Shelby, R. M., Reid, M. & Walls, D. F. Quantum nondemolition detection of optical quadrature amplitudes. Phys. Rev. Lett. 57, 2473–2476 (1986).

    Article  ADS  CAS  Google Scholar 

  35. Bachor, H. A., Levenson, M. D., Walls, D. F., Perlmutter, S. H. & Shelby, R. M. Quantum nondemolition measurements in an optical-fiber ring resonator. Phys. Rev. A 38, 180–190 (1988).

    Article  ADS  CAS  Google Scholar 

  36. Friberg, S. R., Machida, S. & Yamamoto, Y. Quantum nondemolition measurement of the photon number of an optical soliton. Phys. Rev. Lett. 69, 3165–3168 (1992).

    Article  ADS  CAS  Google Scholar 

  37. Drummond, P. D., Shelby, R. M., Friberg, S. R. & Yamamoto, Y. Quantum solitons in optical fibres. Nature 365, 307–313 (1993).

    Article  ADS  Google Scholar 

  38. Friberg, S. R. Quantum nondemolition: probing the mystery of quantum mechanics. Science 278, 1088–1089 (1997).

    Article  ADS  CAS  Google Scholar 

  39. Grangier, P., Roch, J. F. & Reynaud, S. Quantum correlations and non-demolition measurements using two-photon non-linearities in optical cavities. Opt. Commun. 72, 387–392 (1989).

    Article  ADS  CAS  Google Scholar 

  40. Levenson, M. D. et al. Cross-quadrature modulation with the Raman-induced Kerr effect. Phys. Rev. A 44, 2023–2035 (1991).

    Article  ADS  CAS  Google Scholar 

  41. Gheri, K. M., Grangier, P., Poizat, J. P. & Walls, D. F. Quantum nondemolition measurements using ghost transitions. Phys. Rev. A 46, 4276–4285 (1992).

    Article  ADS  CAS  Google Scholar 

  42. Grangier, P., Roch, J. F. & Roger, G. Observation of backaction-evading measurement of an optical intensity in a three-level atomic nonlinear system. Phys. Rev. Lett. 66, 1418–1421 (1991).

    Article  ADS  CAS  Google Scholar 

  43. Cohen-Tannoudji, C. in Fundamental Systems in Quantum Optics (eds Dalibard, J., Raymond, J.-M. & Zinn-Justin, J.) 1–164 (North Holland, Amsterdam, (1992)).

    Google Scholar 

  44. Phillips, W. D. in Fundamental Systems in Quantum Optics (eds Dalibard, J., Raymond, J.-M. & Zinn-Justin, J.) 165–210 (North Holland, Amsterdam, (1992)).

    Google Scholar 

  45. Lambrecht, A., Coudreau, T., Steinberg, A. M. & Giacobino, E. Squeezing with cold atoms. Europhys. Lett. 36, 93–98 (1996).

    Article  ADS  CAS  Google Scholar 

  46. Heidmann, A. et al. Observation of quantum noise reduction on twin laser beams. Phys. Rev. Lett. 59, 2555–2557 (1987).

    Article  ADS  CAS  Google Scholar 

  47. Aytur, O. & Kumar, P. Pulsed twin beams of light. Phys. Rev. Lett. 65, 1551–1554 (1990).

    Article  ADS  CAS  Google Scholar 

  48. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  ADS  Google Scholar 

  49. Ou, Z. Y., Pereira, S. F. & Kimble, H. J. Quantum noise reduction in optical amplification. Phys. Rev. Lett. 70, 3239–3242 (1993).

    Article  ADS  CAS  Google Scholar 

  50. Levenson, J. A., Abram, I., Riviera, T. & Grangier, P. Reduction of quantum noise in optical parametric amplification. J. Opt. Soc. Am. B 10, 2233–2238 (1993).

    Article  ADS  CAS  Google Scholar 

  51. Shapiro, J. H. Optical waveguide tap with infinitesimal insertion loss. Opt. Lett. 5, 351–353 (1980).

    Article  ADS  CAS  Google Scholar 

  52. La Porta, A., Slusher, R. E. & Yurke, B. Back-action evading measurements of an optical field using parametric down conversion. Phys. Rev. Lett. 62, 28–31 (1989).

    Article  ADS  CAS  Google Scholar 

  53. Yuen, H. P. Generation, detection, and application of high-intensity photon-number-eigenstates fields. Phys. Rev. Lett. 56, 2176–2179 (1986).

    Article  ADS  CAS  Google Scholar 

  54. Levenson, J. A. et al. Quantum optical cloning amplifier. Phys. Rev. Lett. 70, 267–270 (1993).

    Article  ADS  CAS  Google Scholar 

  55. Goobar, E., Karlsson, A. & Björk, G. Experimental realization of a semiconductor photon number amplifier and a quantum optical tap. Phys. Rev. Lett. 71, 2002–2005 (1993).

    Article  ADS  CAS  Google Scholar 

  56. Roch, J.-F., Poizat, J.-P. & Grangier, P. Subshotnoise manipulation of light using semiconductor emitters and receivers. Phys. Rev. Lett. 71, 2006–2009 (1993).

    Article  ADS  CAS  Google Scholar 

  57. Bencheikh, K., Simonneau, C. & Levenson, J. A. Cascaded amplifying quantum optical taps: a robust noiseless optical bus. Phys. Rev. Lett. 78, 34–37 (1997).

    Article  ADS  CAS  Google Scholar 

  58. Fejer, M. M., Magel, G. A., Jundt, D. H. & Byer, R. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quant. Electr. 28, 2631–2654 (1992).

    Article  ADS  Google Scholar 

  59. Lovering, D. J., Levenson, J. A., Vidakovic, P., Webjörn, J. & Russel, P. StJ. Noiseless optical amplification using quasi-phase-matched bulk lithium niobate. Opt. Lett. 21, 1439–1441 (1996).

    Article  ADS  CAS  Google Scholar 

  60. Brune, M., Haroche, S., Lefevre, V., Raimond, J. M. & Zagury, N. Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection. Phys. Rev. Lett. 65, 976–979 (1990).

    Article  ADS  CAS  Google Scholar 

  61. Brune, M. et al. Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).

    Article  ADS  CAS  Google Scholar 

  62. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  63. Ekert, A. & Jozsa, R. Quantum computation and Shor's factoring algorithm. Rev. Mod. Phys. 68, 733–753 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge decisive contributions from K. Bencheikh and J.-F. Roch in our experiments. This work was supported in part by the European ESPRIT program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Grangier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grangier, P., Levenson, J. & Poizat, JP. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998). https://doi.org/10.1038/25059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/25059

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing