Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Organic carbon burial forcing of the carbon cycle from Himalayan erosion

Abstract

Weathering and erosion can affect the long-term ocean–atmosphere budget of carbon dioxide both through the consumption of carbonic acid during silicate weathering and through changes in the weathering and burial rates of organic carbon1,2,3,4. Recent attention has focused on increased silicate weathering of tectonically uplifted areas in the India–Asia collision zone as a possible cause for falling atmospheric CO2 levels in the Cenozoic era5,6,7. The chemistry of Neogene sediments from the main locus of sedimentary deposition for Himalayan detritus, the Bengal Fan, can be used to estimate the sinks of CO2 from silicate weathering and from the weathering and burial of organic carbon resulting from Himalayan uplift. Here we show that Neogene CO2 consumption from the net burial of organic carbon during Himalayan sediment deposition was 2–3 times that resulting from the weathering of Himalayan silicates. Thus the dominant effect of Neogene Himalayan erosion on the carbon cycle is an increase in the amount of organic carbon in the sedimentary reservoir, not an increase in silicate weathering fluxes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Consumption of atmospheric CO2 by silicate weathering and burial of organic carbon calculated from the difference between the chemistry of the sediments deposited in the Bengal Fan and their unaltered Himalayan source rocks.

Similar content being viewed by others

References

  1. Garrels, R. M. & Perry, E. A. Cycling of carbon sulfur and oxygen through geologic time.in The Sea 303–336 (1974).

  2. Lasaga, A. C., Berner, R. A. & Garrels, R. M. in The Carbon Cycle and Atmospheric CO2: Natural Variations, Archean to Present (eds Sundquist, E. T. &Broecker, W. S.) 397–410 (American Geophysical Union, Washington DC, 1985).

    Google Scholar 

  3. Berner, R. A. Atmospheric CO2levels over Phanerozoic time. Science 249, 1382–1386 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Walker, J. C. G., Hays, P. B. & Kasting, J. F. Anegative feed back mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Molnar, P., England, P. & Martinod, J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys. 31, 327–396 (1993).

    Article  ADS  Google Scholar 

  7. Goddéris, Y. & François, L. M. Balancing the Cenozoic carbon and alkalinity cycles: Constraints from isotopic records. Geophys. Res. Lett. 23, 3743–3746 (1996).

    Article  ADS  Google Scholar 

  8. Einsele, G., Ratschbacher, L. & Wetzel, A. The Himalaya–Bengal fan denudation accumulation system during the past 20 Ma. J. Geol. 104, 163–184 (1996).

    Article  ADS  Google Scholar 

  9. France-Lanord, C., Derry, L. & Michard, A. in Himalayan Tectonics (eds Treloar, P. J. &Searle, M.) 603–621 (Geol. Soc. Lond., London, 1993).

    Google Scholar 

  10. Sayles, F. L. & Mangelsdorf, P. C. The equilibration of clay minerals with seawater: exchange reactions. Geochim. Cosmochim. Acta 41, 951–960 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Von Damm, K. L., Edmond, J. M., Grant, B. & Measures, C. K. Chemistry of submarine hydrothermal solutions at 21° N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).

    Article  ADS  CAS  Google Scholar 

  12. France-Lanord, C. Chevauchement, métamorphisme et magmatisme en Himalaya du Népal central. Etude isotopique H, C, O.Thesis, Institut National Polytechnique de Lorraine 1987.

  13. Beck, R. A., Burbank, D. W., Sercombe, W. J., Olson, T. L. & Khan, A. M. Organic carbon exhumation and global warming during the early Himalayan collision. Geology 23, 387–390 (1995).

    Article  ADS  Google Scholar 

  14. Shipboard Scientific Party. Initial Reports Sites 717-718-719 Distal Bengal Fan, Proc. ODP Init. Rep. (Ocean Drilling Program, College Station, TX, 1989).

  15. Bouquillon, A., France-Lanord, C., Michard, A. & Tiercelin, J.-J. in Proc. ODP Sci. Res. (eds Cochran, J. R. et al. ) 43–58 (1990).

    Google Scholar 

  16. Derry, L. A. & France-Lanord, C. Neogene Himalayan weathering history and river 87Sr/86Sr: Impact on the marine Sr record. Earth Planet. Sci. Lett. 142, 59–74 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Martin, J. M. & Meybeck, M. Element mass-balance of material carried by major world rivers. Mar. Chem. 7, 173–206 (1979).

    Article  CAS  Google Scholar 

  18. Sarin, M. M., Krishnaswami, S., Dilli, K., Omayajulu, B. l. K. & Moore, W. S. Major ion chemistry of the Ganga–Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochim. Cosmochim. Acta 53, 997–1009 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Gardner, R. & Walsh, N. Chemical weathering oif metamorphic rocks from low elevations in the southern Himalaya. Chem. Geol. 127, 161–176 (1996).

    Article  ADS  CAS  Google Scholar 

  20. France-Lanord, C. & Derry, L. A. δ13C or organic carbon in the Bengal fan: source evolution and transport of C3 and C4 plant carbon to marine sediments. Geochim. Cosmochim. Acta 58, 4809–4814 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Bouquillon, A. Influence continentale et marine dans les sediments Cénozoiques de l'océan Indien Nord Oriental. Thesis, Université de Lille Flandres-Artois (1987).

    Google Scholar 

  22. Berner, R. A. & Berner, E. Global Environment: Water, Air, and Geochemical Cycles 1–376 (Prentice Hall, Upper Saddle River, NJ, 1994).

    MATH  Google Scholar 

  23. Michalopoulos, P. & Aller, R. C. Rapid clay mineral formation in Amazon delta sediments: Reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Milliman, J. D. & Syvitski, P. M. Geomorphic/tectonic control of sediment discharge ot the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Article  ADS  Google Scholar 

  25. Shackleton, S. J. & Hall, M. A. Carbon isotope data from Leg 74 sediments.in Init. Rep. DSDP (eds Moore, T. C. et al. ) 613–619 (US Govt Printing Office, Washington, 1984).

  26. Derry, L. A. & France-Lanord, C. Neogene growth of the sedimentary organic carbon reservoir. Paleoceanography 11, 267–275 (1996).

    Article  ADS  Google Scholar 

  27. Berner, R. A. & Canfield, D. Amodel for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–90 (1995).

    Article  CAS  Google Scholar 

  29. Raymo, M. E. The Himalayas, organic carbon burial, and climate in the Miocene. Paleoceanography 9, 399–404 (1994).

    Article  ADS  Google Scholar 

  30. Caldeira, K. Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992).

    Article  ADS  CAS  Google Scholar 

  31. Subramanian, V. & Ittekkot, V. Carbon transport by the Himalayan rivers.in Biogeochemistry of Major World Rivers, SCOPE (eds Degens, E. T., Kempe, S. &Richey, J. E.) 157–168 (Wiley, Chichester, 1991).

  32. Ittekkot, V. Global trends in the nature of organic matter in river suspensions. Nature 332, 436–438 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Patrick Le Fort for providing part of the Himalayan samples and analyses. This study was supported by the CNRS-INSU program ‘Dynamique et Bilan de la Terre-Fleuve et Érosion’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian France-Lanord.

Rights and permissions

Reprints and permissions

About this article

Cite this article

France-Lanord, C., Derry, L. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390, 65–67 (1997). https://doi.org/10.1038/36324

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36324

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing