Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for magnetic polarons in the magnetoresistive perovskites

Abstract

Manganese perovskites based on the compound LaMnO3 are attracting considerable theoretical and technological interest by virtue of their unusual magnetic and electronic properties1–4. Most notable of these properties is the extremely large change in resistivity that accompanies the application of a magnetic field, an effect known as 'colossal' magnetoresistance. The origin of this effect has been attributed5–7 to the presence of magnetic polarons—charge carriers accompanied by a localized (and magnetically polarized) distortion of the surrounding crystal lattice8,9— but their existence and properties remains a matter of speculation. Here, using a combination of volume thermal expansion (with and without an applied field), magnetic susceptibility and small-angle neutron scattering measurements, we present evidence for the existence of magnetic polarons above the ferromagnetic ordering temperature, Tc. We detect the spontaneous formation of localized 12-Å magnetic clusters above Tc which, on application of a magnetic field, grow in size but decrease in number. We argue that the response of these magnetic polarons to an applied magnetic field underlies the pronounced magnetoresistive properties in the compounds (La1–xAx)2/3Ca1/3MnO3 (where A is Y or Tb).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hellemans, A. Science 263, 880–881 (1996).

    ADS  Google Scholar 

  2. Asamitsu, A., Moritomo, Y., Tomioka, Y., Arima, T. & Tokura, Y. Nature 373, 407–409 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Zhao, G., Conder, K., Keller, H. & Müller, K. A. Nature 381, 676–678 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Zhou, J.-S., Archibald, W. & Goodenough, J. B. Nature 381, 770–772 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Röder, H., Zhang, Jun & Bishop, A. Phys. Rev. Lett. 76, 1356–1359 (1996).

    Article  ADS  Google Scholar 

  6. Kusters, R. M., Singleton, J., Keen, D. A., McGreevy, R. & Hayes, W. Physica B 155, 362–365 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L. & Samwer, K. Phys. Rev. Lett. 71, 2331–2333 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Ibarra, M. R., Algarabel, P. A., Marquina, C., Blasco, J. & Garćia, J. Phys. Rev. Lett. 75, 3541–3544 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Kim, K. H., Gu, J. Y., Choi, H. S., Park, G. W. & Noh, T. W. Phys. Rev. Lett. 77, 1877–1880 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Lynn, J. W. et al. Phys. Rev. Lett. 76, 4046–4049 (1996).

    Article  ADS  CAS  Google Scholar 

  11. De Teresa, J. M. et al. Phys. Rev. B 54, 1187–1193 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Sun, J. Z., Krusin-Elbaum, L., Gupta, A., Gang, Xiao & Parkin, S. S. P. Appl. Phys. Lett. 69, 1002–1004 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Holstein, T. Ann. Phys. 8, 343–389 (1959).

    Article  ADS  CAS  Google Scholar 

  14. Kasuya, T. & Yanase, A. Rev. Mod. Phys. 40, 684–696 (1968).

    Article  ADS  CAS  Google Scholar 

  15. Von Molnar, S. et al. Phys. Rev. Lett. 51, 706–709 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Dietl, T. in Semimagnetic Semiconductors and Diluted Magnetic Semiconductors (eds Averous, M. & Balkanski, M.) 83 (Plenum, New York, 1951).

    Google Scholar 

  17. Wolf, P. A. in Semiconductors and Semimetals Vol. 25 (eds Furdyna, J. K. & Kossut, J.) 413–454 (Academic, New York, 1988).

    Book  Google Scholar 

  18. Zener, C. Phys. Rev. 82, 403–405 (1951).

    Article  ADS  CAS  Google Scholar 

  19. Glatter, O. & Kratky, O. (eds) Small Angle X-ray Scattering (Academic, London, 1983).

  20. Tanaka, J. & Mitsuhashi, T. J. Phys. Soc. Jpn 53, 24–32 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Radaelli, P. G., Marezio, M., Hwang, H. Y., Cheong, S.-W. & Battlog, B. Phys. Rev. B 54, 8992–8995 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teresa, J., Ibarra, M., Algarabel, P. et al. Evidence for magnetic polarons in the magnetoresistive perovskites. Nature 386, 256–259 (1997). https://doi.org/10.1038/386256a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386256a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing