Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electron acceleration from the breaking of relativistic plasma waves

Abstract

ELECTRONS in a plasma undergo collective wave-like oscillations near the plasma frequency. These plasma waves can have a range of wavelengths and hence a range of phase velocities1. Of particular note are relativistic plasma waves2,3, for which the phase velocity approaches the speed of light; the longitudinal electric field associated with such waves can be extremely large, and can be used to accelerate electrons (either injected externally or supplied by the plasma) to high energies over very short distances2á¤-4. The maximum electric field, and hence maximum acceleration rate, that can be obtained in this way is determined by the maximum amplitude of oscillation that can be supported by the plasma5á¤-8. When this limit is reached, the plasma wave is said to ᤘbreakᤙ. Here we report observations of relativistic plasma waves driven to breaking point by the Raman forward-scattering instability9,10 induced by short, high-intensity laser pulses. The onset of wave-breaking is indicated by a sudden increase in both the number and maximum energy (up to 44 MeV) of accelerated plasma electrons, as well as by the loss of coherence of laser light scattered from the plasma wave.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stix, T. H. The Theory of Plasma Waves (McGraw-Hill, New York, 1962).

    MATH  Google Scholar 

  2. Dawson, J. M. Scient. Am. 260, 54–61 (1989).

    Article  Google Scholar 

  3. Tajima, T. & Dawson, J. M. Phys. Rev. Lett. 45, 267–270 (1979).

    Article  ADS  Google Scholar 

  4. Joshi, C. et al. Nature 311, 525–529 (1984).

    Article  ADS  Google Scholar 

  5. Dawson, J. M. Phys. Rev. 113, 383–387 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  6. Coffey, T. P. Phys. Fluids 14, 1402–1406 (1971).

    Article  ADS  Google Scholar 

  7. Akhiezer, A. I. & Polovin, R. V. Sov. Phys. JETP 3, 696–699 (1956).

    Google Scholar 

  8. Katsouleas, T. & Mori, W. B. Phys. Rev. Lett. 61, 90–93 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Forslund, D. W., Kindel, J. M. & Lindman, E. L. Phys. Fluids 18, 1002–1016 (1975).

    Article  ADS  Google Scholar 

  10. Mori, W. B., Decker, L. D., Hinkel, D. E. & Katsouleas, T. Phys. Rev. Lett. 72, 1482–1485 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Chen, F. F. Phys. Scripta T30, 14–23 (1990).

    Article  ADS  Google Scholar 

  12. Joshi, C., Tajima, T., Dawson, J. M., Baldis, H. A. & Ebrahim, N. A. Phys. Rev. Lett. 47, 1285–1288 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Turner, R. E. et al. Phys. Rev. Lett. 57, 1725–1728 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Batha, S. H. et al. Phys. Rev. Lett. 66, 2324–2327 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Nakajima, K. et al. Phys. Rev. Lett. 74, 4428–4431 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Coverdale, C. A. et al. Phys. Rev. Lett. 74, 4659–4662 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Everett, M. J. et al. Phys. Rev. Lett. 74, 1355–1358 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Sprangle, P., Esarey, E., Ting, A. & Joyce, G. Appl. Phys. Lett. 53, 2146–2148 (1988).

    Article  ADS  Google Scholar 

  19. Sessler, A. M. Physics Today 41, 26–34 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Kitagawa, Y. et al. Phys. Rev. Lett. 68, 48–51 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Clayton, C. E. et al. Phys. Rev. Lett. 70, 37–40 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Everett, M. et al. Nature 368, 527–529 (1994).

    Article  ADS  Google Scholar 

  23. Ebrahim, N. A. J. appl. Phys. 76, 7645–7647 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Decker, C. D., Mori, W. B. & Katsouleas, T. Phys. Rev. E50, R3338–R3341 (1994).

    ADS  CAS  Google Scholar 

  25. Tzeng, K-C., Mori, W. B. & Decker, C. D. Phys. Rev. Lett. (submitted).

  26. Danson, C. N. et al. Opt. Commun. 103, 392–397 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Brückner, R. thesis, Univ. Orléans (1994).

  28. Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1975).

    MATH  Google Scholar 

  29. Fraser, J. S. & Sheffield, R. L. IEEE J. quant. Electr. 23, 1489–1496 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modena, A., Najmudin, Z., Dangor, A. et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606–608 (1995). https://doi.org/10.1038/377606a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377606a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing