Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of relativistic broken plasma waves

Abstract

Plasma waves contribute to many fundamental phenomena, including astrophysics1, thermonuclear fusion2 and particle acceleration3. Such waves can develop in numerous ways, from classic Langmuir oscillations carried by electron thermal motion4, to the waves excited by an external force and travelling with a driver5. In plasma-based particle accelerators3,6, a strong laser or relativistic particle beam launches plasma waves with field amplitude that follows the driver strength up to the wavebreaking limit5,7, which is the maximum wave amplitude that a plasma can sustain. In this limit, plasma electrons gain sufficient energy from the wave to outrun it and to get trapped inside the wave bucket8. Theory and numerical simulations predict multi-dimensional wavebreaking, which is crucial in the electron self-injection process that determines the accelerator performances9,10. Here we present a real-time experimental visualization of the laser-driven nonlinear relativistic plasma waves by probing them with a femtosecond high-energy electron bunch from another laser-plasma accelerator coupled to the same laser system. This single-shot electron deflectometry allows us to characterize nonlinear plasma wakefield with femtosecond temporal and micrometre spatial resolutions revealing features of the plasma waves at the breaking point.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the experimental set-up.
Fig. 2: Snapshot of a nonlinear plasma wake and the comparison with PIC simulations.
Fig. 3: The reaching of relativistic wavebreaking by increasing input laser energy.

Similar content being viewed by others

Data availability

Data that support the findings of this study are available upon reasonable request from the corresponding authors. Source data are provided with this Paper.

Code availability

The codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Ocker, S. K. et al. Persistent plasma waves in interstellar space detected by Voyager 1. Nat. Astron. 5, 761–765 (2021).

    Article  ADS  Google Scholar 

  2. Betti, R. & Hurricane, O. Inertial-confinement fusion with lasers. Nat. Phys. 12, 435–448 (2016).

    Article  Google Scholar 

  3. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    Article  ADS  Google Scholar 

  4. Tonks, L. & Langmuir, I. Oscillations in ionized gases. Phys. Rev. 33, 195–210 (1929).

    Article  ADS  MATH  Google Scholar 

  5. Akhiezer, A. & Polovin, R. Theory of wave motion of an electron plasma. Sov. Phys. JETP 3, 696–705 (1956).

    MathSciNet  MATH  Google Scholar 

  6. Chen, P., Dawson, J. M., Huff, R. W. & Katsouleas, T. Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693–696 (1985).

    Article  ADS  Google Scholar 

  7. Dawson, J. M. Nonlinear electron oscillations in a cold plasma. Phys. Rev. 113, 383–387 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Modena, A. et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606–608 (1995).

    Article  ADS  Google Scholar 

  9. Lu, W. et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top. Accelerators Beams 10, 061301 (2007).

    Article  ADS  Google Scholar 

  10. Kostyukov, I., Nerush, E., Pukhov, A. & Seredov, V. Electron self-injection in multidimensional relativistic-plasma wake fields. Phys. Rev. Lett. 103, 175003 (2009).

    Article  ADS  Google Scholar 

  11. Malka, V. et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 1596–1600 (2002).

    Article  ADS  Google Scholar 

  12. Mangles, S. P. et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535–538 (2004).

    Article  ADS  Google Scholar 

  13. Geddes, C. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    Article  ADS  Google Scholar 

  14. Faure, J. et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    Article  ADS  Google Scholar 

  15. Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595, 516–520 (2021).

    Article  ADS  Google Scholar 

  16. Blumenfeld, I. et al. Energy doubling of 42-GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007).

    Article  ADS  Google Scholar 

  17. Litos, M. et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515, 92–95 (2014).

    Article  ADS  Google Scholar 

  18. Adli, E. et al. Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 561, 363–367 (2018).

    Article  ADS  Google Scholar 

  19. Gonsalves, A. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).

    Article  ADS  Google Scholar 

  20. Rousse, A. et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005 (2004).

    Article  ADS  Google Scholar 

  21. Kneip, S. et al. Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 6, 980–983 (2010).

    Article  Google Scholar 

  22. Cipiccia, S. et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7, 867–871 (2011).

    Article  Google Scholar 

  23. Kozlova, M. et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas. Phys. Rev. X 10, 011061 (2020).

    Google Scholar 

  24. Malka, V. et al. Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4, 447–453 (2008).

    Article  Google Scholar 

  25. Gorbunov, L. & Kirsanov, V. Excitation of plasma waves by an electromagnetic wave packet. Sov. Phys. JETP 66, 290–294 (1987).

    ADS  Google Scholar 

  26. Pukhov, A. & Meyer-ter Vehn, J. Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002).

    Article  ADS  Google Scholar 

  27. Lu, W., Huang, C., Zhou, M., Mori, W. & Katsouleas, T. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006).

    Article  ADS  Google Scholar 

  28. Hafz, N. A. et al. Stable generation of GeV-class electron beams from self-guided laser–plasma channels. Nat. Photon. 2, 571–577 (2008).

    Article  Google Scholar 

  29. Clayton, C. E. et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett. 105, 105003 (2010).

    Article  ADS  Google Scholar 

  30. Mangles, S. P. et al. Self-injection threshold in self-guided laser wakefield accelerators. Phys. Rev. Spec. Top. Accelerators Beams 15, 011302 (2012).

    Article  ADS  Google Scholar 

  31. Corde, S. et al. Observation of longitudinal and transverse self-injections in laser-plasma accelerators. Nat. Commun. 4, 1501 (2013).

    Article  ADS  Google Scholar 

  32. Downer, M., Zgadzaj, R., Debus, A., Schramm, U. & Kaluza, M. Diagnostics for plasma-based electron accelerators. Rev. Mod. Phys. 90, 035002 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  33. Matlis, N. H. et al. Snapshots of laser wakefields. Nat. Phys. 2, 749–753 (2006).

    Article  Google Scholar 

  34. Kaluza, M. et al. Measurement of magnetic-field structures in a laser-wakefield accelerator. Phys. Rev. Lett. 105, 115002 (2010).

    Article  ADS  Google Scholar 

  35. Buck, A. et al. Real-time observation of laser-driven electron acceleration. Nat. Phys. 7, 543–548 (2011).

    Article  Google Scholar 

  36. Chang, Y.-Y. et al. Faraday rotation study of plasma bubbles in GeV wakefield accelerators. Phys. Plasmas 28, 123105 (2021).

    Article  ADS  Google Scholar 

  37. Sävert, A. et al. Direct observation of the injection dynamics of a laser wakefield accelerator using few-femtosecond shadowgraphy. Phys. Rev. Lett. 115, 055002 (2015).

    Article  ADS  Google Scholar 

  38. Gilljohann, M. et al. Direct observation of plasma waves and dynamics induced by laser-accelerated electron beams. Phys. Rev. X 9, 011046 (2019).

    Google Scholar 

  39. Ding, H. et al. Nonlinear plasma wavelength scalings in a laser wakefield accelerator. Phys. Rev. E 101, 023209 (2020).

    Article  ADS  Google Scholar 

  40. Zhang, C. et al. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe. Sci. Rep. 6, 29485 (2016).

    Article  ADS  Google Scholar 

  41. Lundh, O. et al. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator. Nat. Phys. 7, 219–222 (2011).

    Article  Google Scholar 

  42. Zhang, C. et al. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator. Phys. Rev. Accelerators Beams 19, 062802 (2016).

    Article  ADS  Google Scholar 

  43. Zhang, C. et al. Femtosecond probing of plasma wakefields and observation of the plasma wake reversal using a relativistic electron bunch. Phys. Rev. Lett. 119, 064801 (2017).

    Article  ADS  Google Scholar 

  44. Kroupp, E. et al. Commissioning and first results from the new 2 × 100 TW laser at the WIS. Matter Radiat. Extremes 7, 044401 (2022).

    Article  Google Scholar 

  45. Sun, G.-Z., Ott, E., Lee, Y. & Guzdar, P. Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526–532 (1987).

    Article  ADS  Google Scholar 

  46. Thomas, A. et al. Effect of laser-focusing conditions on propagation and monoenergetic electron production in laser-wakefield accelerators. Phys. Rev. Lett. 98, 095004 (2007).

    Article  ADS  Google Scholar 

  47. Tsung, F., Ren, C., Silva, L., Mori, W. & Katsouleas, T. Generation of ultra-intense single-cycle laser pulses by using photon deceleration. Proc. Natl Acad. Sci. USA 99, 29–32 (2002).

    Article  ADS  Google Scholar 

  48. Faure, J. et al. Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett. 95, 205003 (2005).

    Article  ADS  Google Scholar 

  49. Streeter, M. et al. Observation of laser power amplification in a self-injecting laser wakefield accelerator. Phys. Rev. Lett. 120, 254801 (2018).

    Article  ADS  Google Scholar 

  50. Pak, A. et al. Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003 (2010).

    Article  ADS  Google Scholar 

  51. McGuffey, C. et al. Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104, 025004 (2010).

    Article  ADS  Google Scholar 

  52. Schmid, K. et al. Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. Spec. Top. Accel. Beams 13, 091301 (2010).

    Article  ADS  Google Scholar 

  53. Buck, A. et al. Shock-front injector for high-quality laser-plasma acceleration. Phys. Rev. Lett. 110, 185006 (2013).

    Article  ADS  Google Scholar 

  54. Thomas, A. G. R. Scalings for radiation from plasma bubbles. Phys. Plasmas 17, 056708 (2010).

    Article  ADS  Google Scholar 

  55. Benedetti, C., Schroeder, C., Esarey, E., Rossi, F. & Leemans, W. Numerical investigation of electron self-injection in the nonlinear bubble regime. Phys. Plasmas 20, 103108 (2013).

    Article  ADS  Google Scholar 

  56. Lu, W. et al. A nonlinear theory for multidimensional relativistic plasma wave wakefields. Phys. Plasmas 13, 056709 (2006).

    Article  ADS  Google Scholar 

  57. Dalichaouch, T. N. et al. A multi-sheath model for highly nonlinear plasma wakefields. Phys. Plasmas 28, 063103 (2021).

    Article  ADS  Google Scholar 

  58. Lehe, R., Kirchen, M., Andriyash, I. A., Godfrey, B. B. & Vay, J.-L. A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm. Comput. Phys. Commun. 203, 66–82 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by The Schwartz/Reisman Center for Intense Laser Physics, by a research grant from the Benoziyo Endowment Fund for the Advancement of Science, by the Israel Science Foundation, Minerva, Wolfson Foundation, the Schilling Foundation, R. Lapon, Dita and Yehuda Bronicki, and by the Helmholtz Association. The simulations were carried out at the Weizmann Institute’s EXAscale Cluster (WEXAC).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and V.M. conceived the idea and designed the set-up. Y.W., O.S. and S.T. carried out the experiment together, with support from S.S. and E.K. Y.W. analysed the data and performed the simulations with the help of I.A.A. Y.W., I.A.A. and V.M. wrote the paper. All authors discussed the results and commented on the manuscript. V.M. provided overall guidance to the project.

Corresponding author

Correspondence to Yang Wan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Alexander Pukhov, Anthony Gonsalves and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, simulation details on the annular ring formation in the probe image.

Source data

Source Data Fig. 2

Plot data for Fig. 2f,g.

Source Data Fig. 3

Plot data for Fig.3b.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Seemann, O., Tata, S. et al. Direct observation of relativistic broken plasma waves. Nat. Phys. 18, 1186–1190 (2022). https://doi.org/10.1038/s41567-022-01717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01717-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing