Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Wednesday 24 May 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 364, 616 - 617 (12 August 1993); doi:10.1038/364616a0

Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide

S. Díaz*, J. P. Grime, J. Harris & E. McPherson

Unit of Comparative Plant Ecology (NERC), Department of Animal and Plant Sciences, The University, Sheffield S10 2TN, UK
* Facultad de Ciencias Exactas, Fisicas y Naturales, Universidad Nacional de Córdoba, C. Correo 495, 5000 Córdoba, Argentina
Environment & Industry Research Unit, University of East London, Romford Road, London E15 4LZ, UK

IN short-term experiments under productive laboratory conditions, native herbaceous plants differ widely in their potential to achieve higher yields at elevated concentrations of atmospheric carbon dioxide1–8. The most responsive species appear to be large fast-growing perennials of recently disturbed fertile soils7,8. These types of plants are currently increasing in abundance9 but it is not known whether this is an effect of rising carbon dioxide or is due to other factors. Doubts concerning the potential of natural vegetation for sustained response to rising carbon dioxide have arisen from experiments on infertile soils, where the stimulus to growth was curtailed by mineral nutrient limitations2,3,10. Here we present evidence that mineral nutrient constraints on the fertilizer effect of elevated carbon dioxide can also occur on fertile soil and in the earliest stages of secondary succession. Our data indicate that there may be a feedback mechanism in which elevated carbon dioxide causes an increase in substrate release into the rhizosphere by non-mycorrhizal plants, leading to mineral nutrient sequestration by the expanded microflora and a consequent nutritional limitation on plant growth.

------------------

References

1. Carlson, R. W. & Bazzaz, F. A. in Environmental and Climatic Impact of Coal Utilisation (eds Singh, J. J. & Deepak, A.) 609−623 (Academic, New York, 1980). | ChemPort |
2. Zangerl, A. R. & Bazzaz, F. A. Oecologia 62, 412−417 (1984). | Article | ISI |
3. Oechel, W. C. & Strain, B. R. in Direct Effects of Increasing Dioxide on Vegetation (eds Strain, B. R. & Cure, J. D.) 117−154 (USDE, Washington, 1985).
4. Oberbauer, S. F., Sionit, N., Hastings, S. J. & Oechel, W. C. Can. J. Bot. 64, 2993−2998 (1986). | ChemPort |
5. Smith, S. D., Strain, B. R. & Sharkey, T. D. Functional Ecology 1, 139−143 (1987).
6. Garbutt, K., Williams, W. E. & Bazzaz, F. A. Ecology 71, 1185−1194 (1990).
7. Hunt, R., Hand, D. W., Hannah, M. A. & Neal, A. M. Functional Ecology 5, 410−421 (1991).
8. Hunt, R., Hand, D. W., Hannah, M. A. & Neal, A. M. Functional Ecology 7 (in the press).
9. Hodgson, J. G. Biol. Conserv. 36, 253−274 (1986). | Article |
10. Hilbert, D. W., Prudhomme, T. I. & Oechel, W. C. Oecologia 72, 466−472 (1987). | Article |
11. Bazzaz, F. A. A. Rev. ecol. Syst. 21, 167−196 (1990).
12. Mooney, H. A. Ecol. Appl. 1, 2−5 (1991).
13. Stitt, M. Pl. Cell Envir. 14, 741−762 (1991). | ChemPort |
14. Woodward, F. I., Thompson, G. F. & McKee, I. F. Ann. Bot. 67 (suppl. 1) 23−38 (1991).
15. Bazzaz, F. A. & Miao, S. L. Ecology 74, 104−112 (1993).
16. Luxmoore, R. J. Bioscience 31, 626 (1981).
17. Lamborg, M. R., Hardy, R. W. F. & Paul, E. A. in CO2 and Plants: The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide (ed. Lemon, E. R.) 131−176 (Westview, Boulder, 1983).
18. van Veen, J. A., Liljeroth, E. & Lekkerkerk, I. J. A. Ecol. Appl. 1, 175−181 (1991).
19. Norby, R. J., O'Neill, E. G. & Luxmoore, R. J. Pl. Physiol. 82, 83−89 (1986). | ChemPort |
20. Norby, R. J., O'Neill, E. G., Hodd, W. G. & Luxmoore, R. J. Tree Physiol. 3, 203−210 (1987). | PubMed |
21. O'Neill, E. G., Luxmoore, R. J. & Norby, R. J. Pl. Soil 104, 3−11 (1987).
22. Norby, R. J., Gunderson, C. A., Wullschleger, S. D., O'Neill, E. G. & McCracken, M. K. Nature 357, 322−324 (1992). | Article |
23. Körner, C. & Arnone, J. A. III Science 257, 1672−1675 (1992). | ISI |
24. Hendry, G. A. F., Brocklebank, K. J. & Thorpe, P. C. in Methods in Comparative Plant Ecology (eds Hendry, G. A. F. & Grime, J. P.) 146−148 (Chapman & Hall, London, 1993).
25. Rorison, I. H., Spencer, R. E. & Gupta, P. L. in Methods in Comparative Plant Ecology (eds Hendry, G. A. F. & Grime, J. P.) 156−163 (Chapman & Hall, London, 1993).
26. Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. in Ecological Interactions in Soil-Plants, Microbes and Animals (eds Fitter, A. H., Atkinson, D., Read, D. J. & Usher, M. B.) 123−125 (Blackwell, Oxford, 1985).
27. Jenkinson, D. S. in Advances in N-Cycling in Agricultural Ecosystems (ed. Wilson, J. R.) 368−385 (CAB International, Wallingford, 1988).
28. Shen, S. M., Pruden, G. & Jenkinson, D. S. Soil Biol. Biochem. 16, 437−444 (1984). | Article | ChemPort |



© 1993 Nature Publishing Group
Privacy Policy