Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stability of orthorhombic MgSiO3 perovskite in the Earth's lower mantle

Abstract

MAGNESIUM-rich silicate perovskite is thought to be the primary constituent of the Earth's lower mantle: experiments have shown1 MgSiO3 perovskite to be stable at lower-mantle pressures, and the elastic properties of perovskite-dominated assemblages agree well with seismological observations2–4. It has also been suggested5–8 that the observed orthorhombic structure will undergo displacive phase transitions to higher-symmetry structures at lower-mantle conditions. The presence of such transitions would have important consequences for mantle convection9, and could provide an explanation for some of the weak seismic discontinuities observed10–12 in the lower mantle. However, the determination of the phase behaviour of MgSiO3 perovskite at lower-mantle conditions has so far eluded both experimental and theoretical efforts. Here we report the results of electronic-structure calculations of the energetics of displacive phase transitions in MgSiO3 perovskite, and demonstrate that the lower-symmetry orthorhombic phase should be highly favoured throughout the lower mantle. Our results are consistent with recent experiments13on MgSiO3 perovskite encompassing the temperatures and pressures of the uppermost regions of the lower mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Knittle, E. & Jeanloz, R. Science 235, 668–670 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Jeanloz, R. & Knittle, E. Phil. Trans. R. Soc. A 328, 377–389 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Bukowinski, M. S. T. & Wolf, G. H. J. geophys. Res. 95, 12583–12593 (1990).

    Article  ADS  Google Scholar 

  4. Stixrude, L. Hemley, R. J., Fei, Y. & Mao, H. K. Science 257, 1099–1101 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Wang, Y., Guyot, F. & Liebermann, R. C. J. geophys. Res. 97, 12327–12347 (1992).

    Article  ADS  Google Scholar 

  6. Wang, Y. et al. Science 251, 410–413 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Wang, Y., Guyot, F., Yeganeh-Haeri, A. & Liebermann, R. C. Science 248, 468–471 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Wolf, G. H. & Bukowinski, M. S. T. Geophys. Res. Lett. 12, 809–812 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Karato, S. & Li, P. Science 255, 1238–1249 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Revenaugh, J. & Jordan, T. H. J. geophys. Res. 96, 19763–19780 (1991).

    Article  ADS  Google Scholar 

  11. Wicks, C. W. & Richards, M. A. EOS 73, 522–523 (1992).

    Google Scholar 

  12. Lay, T. EOS 70, 54–55, 58–59 (1989).

    Article  ADS  Google Scholar 

  13. Funamori, N. & Yagi, T. Geophys. Res. Lett. 20, 387–390 (1993).

    Article  ADS  Google Scholar 

  14. Wei, S. H. & Krakauer, H. Phys. Rev. Lett. 55, 1200–1203 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Hedin, L. & Lundqvist, B. I. J. Phys. C4, 2064–2083 (1971).

    ADS  Google Scholar 

  16. Mehl, M. J., Cohen, R. E. & Krakauer, H. J. geophys. Res. 93, 8009–8022 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Cohen, R. E. Am. Miner. 76, 733–742 (1991).

    CAS  Google Scholar 

  18. Glazer, A. M. Acta Crystallogr. B 28, 3384–3391 (1972).

    Article  CAS  Google Scholar 

  19. Horiuchi, H., Ito, E. & Weidner, D. J. Am. Miner. 72, 357–360 (1987).

    CAS  Google Scholar 

  20. Hemley, R. J., Jackson, M. D. & Gordon, R. G. Phys. Chem. Miner. 14, 2–12 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Cohen, R. E. Geophys. Res. Lett. 14, 1053–1056 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Mao, H. K. et al. J. geophys. Res. 96, 8069–8079 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Wentzcovitch, R. M., Martins, J. L. & Price, G. D. Phys. Rev. Lett. 70, 3947–3950 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Hemley, R. J. & Cohen, R. E. A. Rev. Earth planet. Sci. 20, 553–600 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Chopelas, A. & Boehler, R. in High Pressure Research: Applications to Earth and Planetary Sciences (eds Syono, Y. & Manghnani, M. H.) 101–108 (Am. Geophys. Union, Washington DC & Terra Scientific, Tokyo, 1992).

    Google Scholar 

  26. Smith, J. V. & Brown, W. L. Feldspar Minerals Vol. 1 Ch. 18 (Springer, Berlin, 1988).

    Book  Google Scholar 

  27. Cohen, R. E. in High Pressure Research: Applications to Earth and Planetary Sciences (eds Syono, Y. & Manghnani, M. H.) 425–432 (Am. Geophys. Union, Washington DC & Terra Scientific, Tokyo, 1992).

    Google Scholar 

  28. Karato, S. Geophys. Res. Lett. 19, 2255–2258 (1992).

    Article  ADS  Google Scholar 

  29. Knittle, E. & Jeanloz, R. Geophys. Res. Lett. 16, 609–612 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Gong, Z. & Cohen, R. E. Ferroelectrics 136, 113–124 (1992).

    Article  CAS  Google Scholar 

  31. Khan, F. S. & Broughton, J. Q. Phys. Rev. B39, 3688–3700 (1989).

    Article  ADS  CAS  Google Scholar 

  32. Cohen, R. E., Boyer, L. L., Mehl, M. J., Pickett, W. E. & Krakauer, H. in Perovskite: A Structure of Great Interest to Geophysics and Materials Science (eds Navrotsky, A. & Weidner, D. J.) 55–66 (Am. geophys. Union, Washington DC, 1991).

    Google Scholar 

  33. Birch, F. J. Geophys. Res. 91, 4949–4954 (1986).

    Article  ADS  CAS  Google Scholar 

  34. Jeanloz, R. & Thompson, A. B. Rev. Geophys. Space Phys. 21, 51–74 (1983).

    Article  ADS  CAS  Google Scholar 

  35. Jeanloz, R. & Morris, S. A. Rev. Earth planet. Sci. 14, 377–415 (1986).

    Article  ADS  Google Scholar 

  36. Jeanloz, R. A. Rev. Earth Planet. Sci. 18, 357–386 (1990).

    Article  ADS  Google Scholar 

  37. Lee, R. C. & Johnson, L. R. Geophys. J. R. Astr. Soc. 77, 667–681 (1984).

    Article  ADS  Google Scholar 

  38. Stixrude, L. & Bukowinski, M. S. T. Geophys. Res. Lett. 19, 1057–1060 (1992).

    Article  ADS  Google Scholar 

  39. Stixrude, L. & Bukowinski, M. S. T. J. geophys. Res. 95, 19311–19325 (1990).

    Article  ADS  Google Scholar 

  40. Heinz, D. L. & Jeanloz, R. J. geophys. Res. 92, 11437–11444 (1987).

    Article  ADS  CAS  Google Scholar 

  41. Knittle, E. & Jeanloz, R. Geophys. Res. Lett. 16, 421–424 (1989).

    Article  ADS  CAS  Google Scholar 

  42. Matsui, M. & Price, G. D. Nature 351, 735–737 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stixrude, L., Cohen, R. Stability of orthorhombic MgSiO3 perovskite in the Earth's lower mantle. Nature 364, 613–616 (1993). https://doi.org/10.1038/364613a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364613a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing