Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Depletion of H2O2 in a Greenland ice core: implications for oxidation of volcanic SO2

Abstract

MAJOR volcanic eruptions inject large quantities of sulphur compounds into the atmosphere1. A principal component is sulphur dioxide; subsequent oxidation of SO2 in the atmosphere to sulphuric acid aerosol may lead to climate perturbations2. Here we present evidence to suggest that SO2 oxidation may occur at high latitudes by reaction with H2O2. Variations in sulphate and H2O2 concentrations in four sections of a Greenland ice core (corresponding to four volcanic events) show that high sulphate concentrations, from volcanic fallout, are accompanied by depletion of H2O2. This suggests that some of the volcanic sulphur was still in the form of SO2 when it reached Greenland, and was then oxidized by H2O2 in Greenland precipitation. As SO2 oxidation in the stratosphere is very slow, volcanic events that inject SO2 into the stratosphere could produce large depletions of distant H2O2 reservoirs when the material is later reinjected into the troposphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Devine, J., Sigurdsson, H., Davis, A. & Self, S. J. geophys. Res. 89, 6309–6325 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Pinto, J. P., Turco, R. P. & Toon, O. B. J. geophys. Res. 94, 11165–11174 (1989).

    Article  ADS  Google Scholar 

  3. Hammer, C. U., Clausen, H. B. & Dansgaard, W. Nature 288, 230–235 (1980).

    Article  ADS  Google Scholar 

  4. Graedel, T. E. Rev. Geophys. Space Phys. 15, 421–428 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Stockwell, W. R. & Calvert, J. G. Atmos. Envir. 17, 2231–2235 (1983).

    Article  CAS  Google Scholar 

  6. Calvert, J. G. et al. Nature 317, 27–35 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Conte, C., Devitofranco, G. & DiCastro, V. Atmos. Envir. 23, 1939–1943 (1989).

    Article  CAS  Google Scholar 

  8. Michelangeli, D. V., Allen, M., & Yung Y. L. J. geophys. Res. 94, 18429–18443 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Sigurdsson H. Proc. Conf. on Global Castastrophes in the Earth History, Geol. Soc. of Am. Spec. Pap. 247 (1989).

  10. Pollack, J. B. et al. J. geophys. Res. 81, 1071–1083 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Rampino, M. R., Stothers, R. B. & Self, S. Nature 313, 272–275 (1985).

    Article  ADS  Google Scholar 

  12. Palais, J. M. & Sigurdsson, H. AGU Monogr. 52 (1989).

  13. Kunen, S. M., Lazrus, A. L., Kok, G., & Heikes, B. G. J. geophys. Res. 88, 3671–3674 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Lind, J. A., Lazrus, A. L. & Kok, G. L. J. geophys. Res. 92, 4171–4177 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Spencer, M. J., Lyons, W. B., Twickler, M. S. & Mayewski, P. A. Eos 66, 895–896 (1985).

    Google Scholar 

  16. Guilbault, G. G., Birgnac, P. & Zimmer, M. Analyt. Chem. 40, 190–196 (1968).

    Article  CAS  Google Scholar 

  17. Lazrus, A. L., Kok, G. L., Gitlin, S. N. & Lind, J. A. Analyt. Chem. 57, 917–922 (1985).

    Article  CAS  Google Scholar 

  18. Alley, R. B. & Koci, B. R. Ann. Glaciol. 10, 30–35 (1988).

    Article  Google Scholar 

  19. Legrand, M. & Delmas, R. J. J. geophys. Res. 93, 7153–7168 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Sigg, A. & Neftel, A. Ann. Glaciol. 10, 157–162 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Neftel, A., Jacob, P. & Klockow, D. Tellus B38, 262–270 (1986).

    Article  Google Scholar 

  22. Herron, M. M. J. geophys. Res. 87, 3052–3060 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Hoffmann, M. R. & Edwards, J. O. J. phys. Chem. 79, 2096–2098 (1975).

    Article  CAS  Google Scholar 

  24. Sigurdsson, H., Devine, J. & Davis, A. Jokull 35, 1–8 (1985).

    Google Scholar 

  25. McKormick, M. P. & Swissler, T. J. Geophys. Res. Lett. 10, 877–880 (1983).

    Article  ADS  Google Scholar 

  26. Bridgman, H. A., Schnell, R. C., Khal, J. D., Herbert, G. A. & Joranger, E. Atmos. Envir. 23, 2537–2549 (1989).

    Article  CAS  Google Scholar 

  27. Martin, D. et al. J. geophys. Res. 91, 12249–12254 (1986).

    Article  ADS  Google Scholar 

  28. Altshuller, A. P. Atmos. Envir. 13, 1653–1661 (1983).

    Article  Google Scholar 

  29. McKeen, S. A., Liu, S. C. & Kiang, C. S. J. geophys. Res. 89, 4873–4881 (1984).

    Article  ADS  CAS  Google Scholar 

  30. Krueger, A. J. Science 220, 1377–1379 (1983).

    Article  ADS  CAS  Google Scholar 

  31. Lazrus, A. L. et al. J. geophys. Res. 84, 7869–7875 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laj, P., Drummey, S., Spencer, M. et al. Depletion of H2O2 in a Greenland ice core: implications for oxidation of volcanic SO2. Nature 346, 45–48 (1990). https://doi.org/10.1038/346045a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346045a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing