Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary

Abstract

A connection has recently been proposed between cloud albedo over the oceans and the release of dimethyl sulphide (DMS) by marine algae. DMS acts as a precursor for most of the cloud condensation nuclei (CCN) in the marine atmosphere1. The mass extinctions at the Cretaceous/Tertiary (K/T) boundary include about 90% of marine calcareous nannoplankton2,3, and carbon isotope data show that marine primary productivity as a whole was drastically reduced for at least several tens of thousands of years, and perhaps up to a million years after the extinction event4–6. The elimination of most marine calcareous phytoplankton would have meant a severe decrease in DMS production, leading to a drastic reduction in CCN and hence marine cloud albedo. Here we examine the possible climatic effects of a drastic decrease in CCN associated with a severe reduction in the global marine phytoplankton abundance. Calculations suggest that a reduction in CCN of more than 80%, and the resulting decrease in marine cloud albedo, could have produced a rapid global warming of 6°C or more. Oxygen isotope analyses of marine sediments from many parts of the world have been interpreted as indicating a marked warming coincident with the demise of calcareous nannoplankton at the K/T boundary. Decreased marine cloud albedo, and resulting high sea surface temperatures could have been a factor in the maintenance of low productivity in the 'Strangelove Ocean' period following the K/T extinctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Thierstein, H. R. Spec. Publ. Soc. Econ. Miner. Petrol. 32, 355–394 (1981).

    Google Scholar 

  3. Thierstein, H. R. Spec. Pap. geol Soc. Am. 190, 385–399 (1982).

    Google Scholar 

  4. Hsü, K. J. et al. Science 216, 249–256 (1982).

    Article  ADS  Google Scholar 

  5. Hsü, K. J., McKenzie, J. A. & He, Q. X. Spec. Pap. geol Soc. Am. 190, 317–328 (1982).

    Google Scholar 

  6. Arthur, M. A., Zachos, J. C. & Jones, D. S. Cret. Res. 8, 43–54 (1987).

    Article  Google Scholar 

  7. Bates, T. S., Charlson, R. J. & Gammon, R. H. Nature 329, 319–321 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Wetherald, R. T. & Manabe, S. J. atmos. Sci 37, 1485–1510 (1980).

    Article  ADS  Google Scholar 

  9. Wetherald, R. T. & Manabe S. J. atmos. Sci. 32, 2044–2059 (1975).

    Article  ADS  Google Scholar 

  10. Hansen, J. E. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 130–163 (Am. Geophys. Union, Washington, DC, 1984).

    Google Scholar 

  11. Barron, E. J. & Washington, W. M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 546–553 (Am. Geophys. Union, Washington, DC, 1985).

    Google Scholar 

  12. Brennecke, J. L. & Anderson, T. P. Am. geophys. Union Trans. 58, 415 (1977).

    Google Scholar 

  13. Thierstein, H. R. & Berger, W. H. Nature 276, 461–466 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Scholle, P. A. & Arthur, M. A. Am. Ass. Petrol. Geol. Bull. 64, 67–87 (1980).

    CAS  Google Scholar 

  15. Perch-Nielsen, K., McKenzie, J. & He, Q. X. Spec. Pap. geol. Soc. Am. 190, 353–371 (1982).

    CAS  Google Scholar 

  16. Hsü, K. J. & McKenzie, J. A. in The Carbon Cycle and Atmospheric CO2. Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 487–492 (Am. Geophys. Union, Washington, DC, 1985).

    Google Scholar 

  17. Hsü, K. J. in Mesozoic and Cenozoic Oceans (ed. Hsu, K. J.) 75–84 (Am. Geophys. Union, Washington, DC, 1986).

    Google Scholar 

  18. Zachos, J. C. & Arthur, M. A. Paleoceanogr. 1, 5–26 (1986).

    Article  ADS  Google Scholar 

  19. Andreae, M. O. in The Role of Air-Sea Exchange in Geochemical Cycling (ed. Buat-Ménard, P.) 331–362 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  20. Boersma, A. et al. Init. Rep. DSDP 43, 695–718 (1979).

    CAS  Google Scholar 

  21. Smit, J. Spec. Pap. geol Soc Am. 190, 329–352 (1982).

    Google Scholar 

  22. Margolis, S. V. et al. Paleoceanogr. 2, 361–377 (1987).

    Article  ADS  Google Scholar 

  23. Boersma, A. & Shackleton, N. J. Init. Rep. DSDP 62, 513–526 (1981).

    CAS  Google Scholar 

  24. Zachos, J. C. et al. Init. Rep. DSDP 86, 513–532 (1985).

    CAS  Google Scholar 

  25. Hoffert, M. I. et al. J. atmos. Sci 40, 1659–1668 (1983).

    Article  ADS  Google Scholar 

  26. McLean, D. M. Science 201, 401–406 (1978).

    Article  ADS  CAS  Google Scholar 

  27. McLean, D. M. Cret. Res. 6, 235–259 (1985).

    Article  CAS  Google Scholar 

  28. Emiliani, C., Kraus, E. B. & Shoemaker, E. M. Earth planet. Sci. Lett. 55, 317–334 (1981).

    Article  ADS  Google Scholar 

  29. Kasting, J. F., Richardson, S. M., Pollack, J. B. & Toon, O. B. Am. J. Sci. 286, 361–389 (1986).

    Article  ADS  CAS  Google Scholar 

  30. Glancy, T. J. Jr, Barron, E. J. & Arthur, M. A. Paleoceanogr. 1, 523–537 (1986).

    Article  ADS  Google Scholar 

  31. Alvarez, W. Eos 67, 649–658 (1986).

    Article  ADS  Google Scholar 

  32. Courtillot, V. et al. Earth planet Sci. Lett. 80, 361–374 (1986).

    Article  ADS  CAS  Google Scholar 

  33. Rampino, M. R. Nature 327, 468 (1987).

    Article  ADS  Google Scholar 

  34. Hsü, K. J. et al. Nature 316, 809–811 (1985).

    Article  ADS  Google Scholar 

  35. Margaritz, M. et al. Nature 320, 258–259 (1986).

    Article  ADS  Google Scholar 

  36. Tucker, M. E. Nature 319, 48–50 (1986).

    Article  ADS  Google Scholar 

  37. Aharon, P., Schidlowski, M. & Singh, I. B. Nature 327, 699–702 (1987).

    Article  ADS  CAS  Google Scholar 

  38. Sun, Yijin et al. in Contr. 27th Int. Geol. Congr. 225–234 (Science Press, Beijing, 1984).

    Google Scholar 

  39. Dao-Yi, X. et al. Nature 321, 854–855 (1986).

    Article  ADS  Google Scholar 

  40. Awramik, S. M. Nature 319, 696 (1986).

    Article  ADS  CAS  Google Scholar 

  41. Morris, S. C. & Bengtson, S. Nature 319, 696–697 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rampino, M., Volk, T. Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary. Nature 332, 63–65 (1988). https://doi.org/10.1038/332063a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332063a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing