Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The chemical evolution of the Galaxy

Abstract

The distribution of enriched material in the stars and gas of our Galaxy contains information pertaining to the chemical evolution of the Milky Way from its formation epoch to the present, providing general constraints on theories of galaxy formation. Detailed studies of the metallicities of well-defined samples of long-lived G-dwarf stars in the solar neighbourhood have ruled out the ‘simple closed-box’ model of galactic chemical evolution—too few very metal-poor stars are observed1–3. The weakest assumption inherent in this model is that the galactic disk formed and evolved as a closed system. Allowing accretion of gas, either metal-enriched or primordial (the latter requiring a particular dependence of star formation on gas density), can yield an improved fit to the observations3. However, secondary infall from the galactic extreme spheroid provides only a slight alleviation of this ‘G-dwarf problem’4. Here we show that consideration of the chemical properties of the thick-disk population of the Galaxy5,6 results in a self-consistent model for galactic chemical evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. van den Bergh, S. Astr. J. 67, 486–490 (1962).

    Article  ADS  CAS  Google Scholar 

  2. Schmidt, M. Astrophys. J. 137, 758–769 (1963).

    Article  ADS  Google Scholar 

  3. Pagel, B. E. J. & Patchett, B. E. Mon. Not. R. astr. Soc. 172, 13–40 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Hartwick, F. D. A. Astrophys. J. 209, 418–423 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Gilmore, G. & Reid, I. N. Mon. Not. R. astr. Soc. 202, 1025–1047 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Gilmore, G. & Wyse, R. F. G. Astr. J. 90, 2015–2026 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Eggen, O. J., Lynden-Bell, D. & Sandage, A. R. Astrophys. J. 136, 748–766 (1962).

    Article  ADS  Google Scholar 

  8. Zinn, R. Astrophys. J. 293, 424–444 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Norris, J., Bessel, M. S. & Pickles, A. J. Astrophys. J. Suppl. Ser. 58, 463–492 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Sandage, A. R. in Stellar Populations (eds Renzini, A., Tosi, M. & Norman, C.) (Cambridge University Press, in the press).

  11. Norris, J. Astrophys. J. Suppl. Ser. (in the press).

  12. Jones, B. J. T. & Wyse, R. F. G. Astr. Astrophys. 120, 165–180 (1983).

    ADS  CAS  Google Scholar 

  13. Gilmore, G. Mon. Not. R. astr. Soc. 207, 223–240 (1984).

    Article  ADS  Google Scholar 

  14. Twarog, B. A. Astrophys. J. 242, 242–259 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Scalo, J. Fundam. Cosmic. Phys. (in the press).

  16. Tinsley, B. M. Fundam. Cosmic Phys. 5, 287–342 (1980).

    ADS  CAS  Google Scholar 

  17. Beers, T. C., Preston, G. W. & Shectman, S. A. Astrophys. J. (in the press).

  18. Hartwick, F. D. A. Memorie Soc. astr. ital, 54, 51–64 (1983).

    ADS  CAS  Google Scholar 

  19. Fall, S. M. in The Milky Way Galaxy (eds van Woerden, H., Allen, R. J. & Butler, W.) 603–610 (Reidel, Dordrecht, 1985).

    Book  Google Scholar 

  20. Carlberg, R. G., Dawson, P. C., Hsu, T. & VandenBerg, D. A. Astrophys. J. 294, 674–681 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Mirabel, I. F. & Morras, R. Astrophys. J. 279, 86–92 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Whitford, A. E. & Rich, R. M. Astrophys. J. 274, 723–732 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Van der Kruit, P. C. Astr. Astrophys. 140, 470–475 (1984).

    ADS  CAS  Google Scholar 

  24. Faber, S. M. & Gallagher, J. S. A. Rev. Astr. Astrophys. 17, 135–187 (1979).

    Article  ADS  Google Scholar 

  25. de Vaucouleurs, G. & Pence, W. Astr. J. 83, 1163–1173 (1978).

    Article  ADS  Google Scholar 

  26. Truran, J. in Stellar Populations (eds Renzini, A., Tosi, M. & Norman, C.) (Cambridge University Press, in the press).

  27. Sneden, C., Lambert, D. L. & Whitaker, R. W. Astrophys. J. 234, 964–972 (1979).

    Article  ADS  CAS  Google Scholar 

  28. Clegg, R. E. S., Lambert, D. L. & Tomkin, J. Astrophys. J. 250, 262–275 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilmore, G., Wyse, R. The chemical evolution of the Galaxy. Nature 322, 806–807 (1986). https://doi.org/10.1038/322806a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322806a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing