Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metamorphism of reduced granulites in low-CO2 vapour-free environment

Abstract

Pervasive flooding of CO2 has been proposed as the cause of granulite facies metamorphism that is capable of producing many distinctive characteristics of the deep continental crust: reduced water activity, orthopyroxene-bearing assemblages, depletion of large-ion lithophile (LIL) elements, and dehydration1–6. The calculations presented here of C–O–H fluid composition for conditions of granulite facies metamorphism show that oxygen fugacity (f O2) estimates from many terranes are sufficiently low that the addition of CO2-rich fluid causes graphite to precipitate. For values of pressure (P) and temperature (T) common to granulites, and with f O2 slightly below the quartz–fayalite–magnetite buffer (QFM), the addition of CO2 sufficient to grow 10 vol. % orthopyroxene requires the precipitation of 1.5 vol. % graphite. As 0.1 vol. % graphite is readily recognizable, but is not reported in most low f O2 granulites, these rocks have not been flooded by CO2, and low f H2O is probably due to extraction of a magma or recrystallization of an already dry rock7,8. Granulite terranes may thus result from a combination of these three processes and the dominance of any one cannot now be demonstrated on a regional basis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Touret, J. Lithos 4, 239–249; 423–436 (1971).

    Article  ADS  Google Scholar 

  2. Newton, R. C., Smith, J. V. & Windley, B. F. Nature 288, 45–50 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Glassley, W. E. Nature 295, 229–231 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Janardhan, A. S., Newton, R. C. & Hansen, E. C. Contr. Miner. Petrol. 79, 130–149 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Glassley, W. E. Geochim. cosmochim. Acta 47, 596–616 (1983).

    Article  ADS  Google Scholar 

  6. Condie, K. C., Allen, P. & Narayana, B. L. Contr. Miner. Petrol. 81, 157–167 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Fyfe, W. S. Phil. Trans. R. Soc. Lond. 273A, 457–461 (1973).

    Article  ADS  Google Scholar 

  8. Valley, J. W. & O'Neil, J. R. Contr. Miner. Petrol. 85, 158–173 (1984).

    Article  ADS  CAS  Google Scholar 

  9. French, B. M. Rev. Geophys. 4, 223–253 (1966).

    Article  ADS  CAS  Google Scholar 

  10. Ohmoto, H. & Kerrick, D. M. Am. J. Sci. 277, 1013–1044 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Valley, J. W., Peterson, E. U., Essene, E. J. & Bowman, J. R. Am. Miner. 67, 545–557 (1982).

    CAS  Google Scholar 

  12. Kerrick, D. M. & Jacobs, G. K. Am. J. Sci. 281, 735–767 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Jacobs, G. K. & Kerrick, D. M. Geochim. cosmochim. Acta 45, 607–614 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Robie, R. A., Hemingway, B. S. & Fisher, J. R. U.S. geol. Surv. Bull. 1452, (1979).

  15. Valley, J. W., McLelland, J., Essene, E. J. & Lamb, W. Nature 301, 226–228 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Bohlen, S. R., Peacor, D. R. & Essene, E. J. Am. Miner. 65, 55–62 (1980).

    CAS  Google Scholar 

  17. Valley, J. W. & O'Neil, J. R. Geochim. cosmochim. Acta 45, 411–419 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Cameron, E. N. & Weis, P. L. U.S. geol. Surv. Bull. 1082 –E (1960).

  19. Field, D. & Starmer, I. C. Nature 298, 303–304 (1982).

    Article  ADS  Google Scholar 

  20. Glassley, W. E. Contr. Miner. Petrol. 84, 15–24 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Buddington, A. F. & Lindsley, D. H. J. Petrol. 5, 310–357 (1964).

    Article  ADS  CAS  Google Scholar 

  22. Bohlen, S. R., Essene, E. J. & Hoffman, K. Bull. geol. Soc. Am. 91, 110–113 (1980).

    Article  CAS  Google Scholar 

  23. Perkins, D., Essene, E. J. & Marcotty, L. A. Can. J. Earth Sci. 19, 1759–1774 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Anderson, A. T. J. Geol. 76, 528–547 (1968).

    Article  ADS  CAS  Google Scholar 

  25. Rollinson, H. R. Miner. Mag. 43, 623–631 (1980).

    Article  CAS  Google Scholar 

  26. Myers, J. & Eugster, H. P. Contr. Miner. Petrol. 82, 75–90 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Spencer, K. J. & Lindsley, D. H. Am. Miner. 66, 1189–1201 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, W., Valley, J. Metamorphism of reduced granulites in low-CO2 vapour-free environment. Nature 312, 56–58 (1984). https://doi.org/10.1038/312056a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312056a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing