Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Redividing the basidiomycetes on the basis of 5S rRNA sequences

Abstract

Sequence data from slowly evolving macromolecules have been recognized for at least two decades1 to be of value in reconstructing the ordering and timing of evolutionary events as far back as the origins of eukaryotes and prokaryotes2,3. Fungi are particularly suitable organisms for investigating phylogenetic relationships by this approach. The fossil record is poor4 and morphological characters are limited, providing few reliable markers of phylogenetic relationships. To date, nearly all molecular sequence data from fungi have been derived from ascomycetes5,6, primarily yeasts. Basidiomycetes are represented by only one relevant macromolecular sequence, that of the cytochrome c from Ustilago sphaerogena7. Here, we report 5S ribosomal RNA (rRNA) nucleotide sequences from eight species of basidiomycetes. These sequences define two distinct clusters that correlate with the presence or absence of cell wall septal dolipores rather than with the traditional division of these species between the classes8,9 Heterobasidiomycetae and Homobasidiomycetae. We believe this provides a striking example of the utility of molecular sequence data in distinguishing reliable morphological or cytological marker(s) for a given phylogenetic lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zuckerkandl, E. & Pauling, L. in Horizons in Biochemistry (eds Kasha, M. & Pullman, B.) 189–225 (Academic, New York, 1962).

    Google Scholar 

  2. Schwartz, R. M. & Dayhoff, M. O. Science 199, 395–403 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Woese, C. R. & Fox, G. E. Proc. natn. Acad. Sci. U.S.A. 74, 5088–5090 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Tiffney, B. H. & Barghoorn, E. S. Occas. Pap. Farlow Herb. Cryptogam. Bot. Harv. Univ. 7, 1–42 (1974).

    Google Scholar 

  5. Schwartz, R. M. & Dayhoff, M. O. in Atlas of Protein Sequences and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.) 28–43 (National Biomedical Research Foundation, Washington DC, 1979).

    Google Scholar 

  6. Erdmann, V. A. Nucleic Acids Res. 10, r93–r114 (1982).

    Article  CAS  Google Scholar 

  7. Bitar, K. G., Vinogradov, S. N., Nolan, C., Weiss, L. J. & Margoliash, E. Biochem. J. 129, 561–569 (1972).

    Article  CAS  Google Scholar 

  8. Patouillard, N. thesis, Paris Univ. (1900).

  9. Whittaker, R. H. Science 163, 150–160 (1969).

    Article  ADS  CAS  Google Scholar 

  10. Donis-Keller, H., Maxam, A. M. & Gilbert, W. Nucleic Acids Res. 4, 2527–2538 (1977).

    Article  CAS  Google Scholar 

  11. MacKay, R. M., Gray, M. W. & Doolittle, W. F. Nucleic Acids Res. 8, 4911–4917 (1980).

    Article  CAS  Google Scholar 

  12. Peattie, D. A. Proc. natn. Acad. Sci. U.S.A. 76, 1760–1764 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Donis-Keller, H. Nucleic Acids Res. 8, 3133–3142 (1980).

    Article  CAS  Google Scholar 

  14. Boguski, M. S., Heiter, P. A. & Levy, C. C. J. biol. Chem. 255, 2160–2163 (1980).

    CAS  PubMed  Google Scholar 

  15. Böhm, S., Fabian, H. & Welfle, H. Acta biol. med. germ. 40, K19–K29 (1981).

    PubMed  Google Scholar 

  16. Diels, L., DeBaere, R., Vandenberghe, A. & DeWachter, R. Nucleic Acids Res. 9, 5141–5144 (1981).

    Article  CAS  Google Scholar 

  17. Leuhrsen, K. R. & Fox, G. E. Proc. natn. Acad. Sci. U.S.A. 78, 2150–2154 (1981).

    Article  ADS  Google Scholar 

  18. Garrett, R. A., Douthwaite, S. & Noller, H. F. Trends biochem. Sci. 6, 137–139 (1981).

    Article  CAS  Google Scholar 

  19. Bessey, E. A. Morphology and Taxonomy of Fungi, 436–463 (Hafner, New York, 1961).

    Google Scholar 

  20. Olive, L. S. J. Elisha Mitchell scient. Soc. 84, 261–266 (1967).

    Google Scholar 

  21. Long, E. O. & Dawid, I. B. A. Rev. Biochem. 49, 727–764 (1980).

    Article  CAS  Google Scholar 

  22. Selker, E. U. et al. Cell 24, 819–828 (1981).

    Article  CAS  Google Scholar 

  23. Ford, P. J. & Brown, R. D. Cell 8, 485–493 (1976).

    Article  CAS  Google Scholar 

  24. Mashkova, T. D. et al. Nucleic Acids Res. 9, 2141–2151 (1981).

    Article  CAS  Google Scholar 

  25. Bracker, C. E. A. Phytopath. 5, 343–374 (1967).

    Article  Google Scholar 

  26. Gull, K. in The Filamenteous Fungi Vol. 3 (eds Smith, J. E. & Berry, D. R.) 78–93 (Wiley, New York, 1978).

    Google Scholar 

  27. Moore, R. T. & McAlear, J. H. Am. J. Bot. 49, 86–100 (1962).

    Article  Google Scholar 

  28. Blanz, P. Z. Mykologia 44, 91–107 (1978).

    ADS  Google Scholar 

  29. Kreger-van Rij, N. J. W. & Veenhuis, M. J. gen. Microbiol. 68, 87–95 (1971).

    Article  Google Scholar 

  30. Haskins, R. H. Can. J. Bot. 53, 1139–1148 (1975).

    Article  Google Scholar 

  31. Martinez, A. T. Stud. Mycol. 19, 50–57 (1979).

    Google Scholar 

  32. Saito, I., Suzui, T. & Baba, T. Trans. Mycol. Soc. Jpn 21, 187–192 (1980).

    Google Scholar 

  33. Deml, G. Z. Pilzkunde 43, 291–303 (1977).

    Google Scholar 

  34. Khan, S. R. J. gen. Microbiol. 97, 339–342 (1976).

    Article  Google Scholar 

  35. Moore, R. T. Mycologia 70, 1008–1024 (1978).

    Article  Google Scholar 

  36. Kreger-van Rij, N. J. W. in The Fungi: an Advanced Treatise Vol. 4A (eds Ainsworth, C. G., Sparrow, F. K. & Sussman, A. S.) 11–32 (Academic, New York, 1973).

    Google Scholar 

  37. Khan, S. R. & Talbot, P. H. B. Mycologia 68, 1027–1036 (1976).

    Article  Google Scholar 

  38. Anderson, J., Andresini, W. & Delihas, N. J. biol. Chem. (in the press).

  39. Baba, M. L., Darga, L. L., Goodman, M. & Czelusniak, J. J. molec. Evol. 17, 197–213 (1981).

    Article  ADS  CAS  Google Scholar 

  40. Talbot, P. H. B. Persoonia 3, 371–406 (1965).

    Google Scholar 

  41. Lowy, B. Taxon 17, 118–127 (1968).

    Article  Google Scholar 

  42. Shaffer, R. L. Mycologia 67, 1–19 (1975).

    Article  Google Scholar 

  43. Moore, R. T. Antonie van Leewenhoek Ned. Tindsch. Hyg. 38, 567–584 (1972).

    Article  Google Scholar 

  44. Dykstra, M. J. Can. J. Bot. 52, 971–972 (1974).

    Article  Google Scholar 

  45. Khan, S. R. & Kimbrough, J. W. Can. J. Bot. 58, 642–647 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, W., Doolittle, W. Redividing the basidiomycetes on the basis of 5S rRNA sequences. Nature 299, 723–724 (1982). https://doi.org/10.1038/299723a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299723a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing