Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prebiotic atmospheric oxygen levels

Abstract

It has been argued1–2 that the early Precambrian atmosphere contained a negligible amount of oxygen and that the transition to the modern oxygen-rich atmosphere began some 2,000 Myr BP when photosynthetic oxygen produced by blue-green algae oxidized ferrous iron in solution and escaped from the ocean to the atmosphere. Others3 have argued for an even earlier occurrence of an oxygen-rich atmosphere. Although photosynthesis has provided the oxygen of the present atmosphere, the photosynthetic model for Precambrian oxygen production has difficulties. There is the problem of identifying the large deposits of reduced carbon needed to account for the red beds4 and the predominant role of photosynthesis as an oxygen source in the early Precambrian has been questioned on both biochemical and geochemical grounds5. Before photosynthesis the only possible abiotic source of atmospheric oxygen would have been the direct photodissociation of water vapour by solar UV photons. What atmospheric oxygen level could have been produced by this purely abiotic process? It has been argued6 that the abiotic oxygen level was entirely negligible, ≤10−12 PAL (present atmospheric level), but this assumed that the water vapour content of the palaeoatmosphere was the same as at present with a constant H2O mixing ratio of 3.8 p.p.m. above an altitude of 10 km. I argue here that this is too restrictive an assumption and calculate possible atmospheric oxygen levels for larger water vapour mixing ratios which cannot be ruled out by our limited knowledge of Precambrian conditions. Even a moderate oxygen content for the early Precambrian atmosphere could have had significant evolutionary implications because a biologically effective UV ozone screen would be established once the oxygen content exceeded 10−2 PAL (refs 7–11).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cloud, P. Am. J. Sci. 272, 537–548 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Margulis, L., Walker, J. C. G. & Rambler, M. Nature 264, 620–624 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Dimroth, E. & Kimberley, M. M. Can. J. Earth Sci. 13, 1161–1185 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Van Valen, L. Science 171, 439–443 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Towe, K. M. Nature 274, 657–661 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Kasting, J. F., Liu, S. C. & Donahue, T. M. J. geophys. Res. 84, 3097–3107 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Ratner, M. I. & Walker, J. C.G. J. atmos. Sci. 29, 803–808 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Blake, A. J. & Carver, J. H. J. atmos. Sci. 34, 720–728 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Levine, J. S., Hays, P. B. & Walker, J. C. G. Icarus 39, 295–309 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Katsumori, M. J. met. Soc. Jap. 57, 243–253 (1979).

    Article  CAS  Google Scholar 

  11. Kasting, J. F. & Donahue, T. M. J. geophys. Res. 85, 3255–3263 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Hunten, D. M. J. atmos. Sci. 30, 726–732, 1481–1494 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Hunten, D. M. & Strobel, D. F. J. atmos. Sci. 31, 305–317 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Liu, S. C. & Donahue, T. M. J. atmos. Sci. 31, 1118–1136 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Kasting, J. F. & Walker, J. C. G. J. geophys. Res. 86, 1147–1158 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Walker, J. C. G. Evolution of the Atmosphere (Macmillan, New York, 1977).

    Google Scholar 

  17. Holland, H. D. Proc. Symp. Hydrogeochemistry and Biogeochemistry, 68–81 (Clarke, Washington, 1973); The Chemistry of the Atmosphere and Oceans (Wiley, New York, 1978).

    Google Scholar 

  18. Brinkmann, R. T. J. geophys. Res. 74, 5355–5368 (1969).

    Article  ADS  CAS  Google Scholar 

  19. Hart, M. H. Icarus 33, 23–39 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Dobson, G. M.B. Exploring the Atmosphere (Clarendon, Oxford, 1963).

    Google Scholar 

  21. Mastenbrook, H. J. J. atmos. Sci. 25, 299–311 (1968).

    Article  ADS  Google Scholar 

  22. Newman, M. J. & Rood, R. T. Science 198, 1035–1037 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Sagan, C. & Mullen, G. Science, 177, 52–56 (1972).

    Article  ADS  CAS  Google Scholar 

  24. Owen, T., Cess, R. D. & Ramanathan, V. Nature 277, 640–642 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Carver, J. H. 4th int. Symp. on Environmental Biogeochemistry, 55–64 (Australian Academy of Science, 1980).

    Google Scholar 

  26. Henderson-Sellers, A. & Meadows, A. J. Nature 270, 589–591 (1977).

    Article  ADS  Google Scholar 

  27. Knauth, L. P. & Epstein, S. Geochim. cosmochim. Acta 40, 1095–1108 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Schopf, T. J.M. Paleoceanography (Harvard University Press, Cambridge, 1980).

    Book  Google Scholar 

  29. Morss, D. A. & Kuhn, W. R. Icarus 33, 40–49 (1978).

    Article  ADS  CAS  Google Scholar 

  30. Grandstaff, D. E. Precambr. Res. 13, 1–26 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carver, J. Prebiotic atmospheric oxygen levels. Nature 292, 136–138 (1981). https://doi.org/10.1038/292136a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292136a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing