Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Replication of linear adenovirus DNA is not hairpin-primed

Abstract

THE mechanism of replication of the 5′ ends of linear DNA chromosomes remains unclear1,2, as the known DNA polymerases, which act in the 5′ to 3′ direction, require a free 3′-OH as a primer for chain elongation. If a short ribonucleotide sequence primed DNA synthesis, its subsequent removal would leave no primer for gap fill synthesis at the 5′ end. Most linear bacteriophage DNA molecules therefore have terminal repeats or single stranded complementary ends, which allow formation of circular or concatemeric replication intermediates1. Several interesting models have been proposed to explain replication of the 5′ ends of eukaryote chromosomes and linear DNA molecules which cannot circularise. Cavalier-Smith3 proposed that chromosome ends can form self-complementary hairpin loops, allowing the parental 3′ end to act as a primer for DNA polymerase, followed by endonuclease action and repair synthesis. This model has been modified by Bateman4 and Tattersall and Ward5 have extended it to propose a rolling hairpin model for the replication of parvovirus and linear chromosomal DNA. There is now considerable evidence for hairpin priming of replication of the DNA of minute virus of mice (MVM) and adeno-associated virus (AAV)5–7, and hairpin priming may well be a general mechanism for replication of linear DNA molecules that are unable to circularise or form concatemers3,5,7. Roberts8 and Wu et al.9 have proposed a hairpin-primed model for replication of adenovirus DNA, which is summarised in Fig. 1. We present evidence here which is not consistent with a hairpin-primed model for replication of adenovirus DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Watson, J. D. Nature new Biol. 239, 197–201 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Bellett, A. J. D. & Younghusband, H. B. J. molec. Biol. 72, 691–709 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Cavalier-Smith, T. Nature 250, 467–470 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bateman, A. J. Nature 253, 379–380 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Tattersall, P. & Ward, D. C. Nature 263, 106–109 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Straus, S. E., Sebring, E. D. & Rose, J. A. Proc. natn. Acad. Sci. U.S.A. 73, 742–746 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Hauswirth, W. W. & Berns, K. I. Virology 78, 488–499 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Roberts, R. J. (in the press).

  9. Wu, M., Roberts, R. J. & Davidson, N. J. Virol. 21, 766–777 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Philipson, L., Pettersson, U. & Lindberg, U. Virology Monographs no. 14 (Springer, Vienna and New York, 1975).

    Google Scholar 

  11. Rekosh, D. M. K., Russell, W. C., Bellett, A. J. D. & Robinson, A. J. Cell 11, 283–295 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Horwitz, M. S. J. Virol. 18, 307–315 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Weingärtner, B., Winnaker, E. L., Tolun, A. & Pettersson, U. Cell 9, 259–268 (1976).

    Article  PubMed  Google Scholar 

  14. Sussenbach, J. S. & Kuijk, M. G. Virology 77, 149–157 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Younghusband, H. B. & Bellett, A. J. D. J. Virol. 8, 265–274 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Green, M. et al. Proc. natn. Acad. Sci. U.S.A. 57, 1302–1309 (1967).

    Article  ADS  CAS  Google Scholar 

  17. Horwitz, M. S. J. Virol. 8, 675–683 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fife, K. H., Berns, K. I. & Murray, K. Virology 78, 475–487 (1977).

    Article  CAS  PubMed  Google Scholar 

  19. Bourguignon, G. J., Tattersall, P. J. & Ward, D. C. J. Virol. 20, 290–306 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Koczot, F. J., Carter, B. J., Garon, C. F. & Rose, J. A. Proc. natn. Acad. Sci. U.S.A. 70, 215–219 (1973).

    Article  ADS  CAS  Google Scholar 

  21. Denhardt, D. T., Eisenberg, S., Bartok, K. & Carter, B. J. J. Virol. 18, 672–684 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirt, B. J. molec. Biol. 26, 365–369 (1967).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

STILLMAN, B., BELLETT, A. & ROBINSON, A. Replication of linear adenovirus DNA is not hairpin-primed. Nature 269, 723–725 (1977). https://doi.org/10.1038/269723a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269723a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing