Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ion Uptake and Protein Synthesis in Enzymatically Isolated Plant Cells

Abstract

THE D-threo isomer of chloramphenicol is an antibiotic and a specific inhibitor of protein synthesis in bacteria1. It also inhibits protein synthesis (net synthesis or turnover) in higher plants2–6, including cell-free systems7,8. Suppression of the induced increase in oxygen uptake in potato disks by D-chloramphenicol9 has been considered as indirect evidence of an inhibition of protein (possibly cytochrome oxidase) synthesis. Enzyme development during germination was also inhibited by D-chloramphenicol10,11. Recently, this chemical has also been used in several systems to relate ion uptake to protein synthesis in higher plants2,3,6,12–16. Others oppose this interpretation17–20. Meanwhile, the extrapolation of information on chloramphenicol from bacteria to higher plant systems has been criticized4,18. Ellis18, for example, observed that D-chloramphenicol did not affect incorporation of amino-acids into protein (trichloroacetic acid (TCA)-insoluble fraction) and yet it reduced ion uptake in higher plants. In contrast, the L-threo-isomer of chloramphenicol, which is neither an antibiotic nor an inhibitor of protein synthesis in bacterial systems, does inhibit ion uptake18 and root growth21 in higher plants. Thus, further elucidation was necessary as to the action of chloramphenicol as an inhibitor of ion uptake via an effect on protein synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brock, T. D., Bact. Rev., 25, 32 (1961).

    CAS  Google Scholar 

  2. Jacoby, B., and Sutcliffe, J. F., Nature, 195, 1014 (1962).

    Article  ADS  CAS  Google Scholar 

  3. Jacoby, B., and Sutcliffe, J. F., J. Exp. Bot., 13, 335 (1962).

    Article  CAS  Google Scholar 

  4. Molotkovskii, Yu G., and Smirnow, A. M., Soviet Plant Physiol., 10, 268 (1963).

    Google Scholar 

  5. Nooden, L. D., and Thimann, K. V., Proc. U.S. Nat. Acad. Sci., 50, 194 (1963).

    Article  ADS  CAS  Google Scholar 

  6. Peaud-Lenoël, C., and de Gouray-Margerie, C., Phytochem., 1, 267 (1962).

    Article  Google Scholar 

  7. Rabson, R., and Novelli, G. D., Proc. U.S. Nat. Acad. Sci., 46, 484 (1960).

    Article  ADS  CAS  Google Scholar 

  8. Webster, G. C., J. Biol. Chem., 229, 535 (1957).

    CAS  PubMed  Google Scholar 

  9. Calo, N., Marks, J., and Varner, J. E., Nature, 180, 1142 (1957).

    Article  ADS  CAS  Google Scholar 

  10. Srivastava, B. I. S., and Meredith, W. O. S., Canad. J. Botany, 40, 1257 (1962).

    Article  Google Scholar 

  11. Young, J. L., and Varner, J. E., Arch. Biochem. Biophys., 84, 71 (1959).

    Article  CAS  Google Scholar 

  12. Bowling, D. J. F., Nature, 200, 284 (1963).

    Article  ADS  CAS  Google Scholar 

  13. Höffner, W., Naturwiss., 50, 720 (1963).

    Article  ADS  Google Scholar 

  14. Jyung, W. H., and Wittwer, S. H., Amer. J. Bot., 51, 437 (1964).

    Article  CAS  Google Scholar 

  15. Sutcliffe, J. F., Nature, 188, 294 (1960).

    Article  ADS  CAS  Google Scholar 

  16. Uhler, R. L., and Russell, R. S., J. Exp. Bot., 14, 431 (1963).

    Article  CAS  Google Scholar 

  17. Balough, E., Böszörményi, Z., and Cseh, E., Biochim. Biophys. Acta, 52, 381 (1961).

    Article  Google Scholar 

  18. Ellis, R. J., Nature, 200, 596 (1963).

    Article  ADS  CAS  Google Scholar 

  19. Hanson, J. B., and Hodges, T. K., Nature, 200, 1009 (1963).

    Article  ADS  CAS  Google Scholar 

  20. Stoner, C. D., Hodges, T. K., and Hanson, J. B., Nature, 203, 258 (1964).

    Article  ADS  CAS  Google Scholar 

  21. Rønnike, F., Physiol. Plant., 11, 421 (1958).

    Article  Google Scholar 

  22. Zaitlin, M., Nature, 184, 1002 (1959).

    Article  ADS  Google Scholar 

  23. Jyung, W. H., Wittwer, S. H., and Bukovac, M. J., Plant Physiol. (in the press).

  24. Click, R. E., and Hackett, D. P., Proc. U.S. Nat. Acad. Sci., 50, 243 (1963).

    Article  ADS  CAS  Google Scholar 

  25. Dilley, D. R., and Walker, D. R., Plant Physiol., 36, 757 (1961).

    Article  CAS  Google Scholar 

  26. Pollard, J. K., and Steward, F. C., J. Exp. Bot., 10, 17 (1959).

    Article  CAS  Google Scholar 

  27. Sutcliffe, J. F., and Bollard, E. J., Steward, F. C., J. Exp. Bot., 11, 151 (1960).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

JYUNG, W., WITTWER, S. & BUKOVAC, M. Ion Uptake and Protein Synthesis in Enzymatically Isolated Plant Cells. Nature 205, 921–922 (1965). https://doi.org/10.1038/205921b0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/205921b0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing