Articles

Filter By:

Article Type
  • The upgrade of carbon monoxide to higher alcohols offers a route to renewable fuels. Now, Sinton, Sargent and co-workers report a highly fragmented, copper-based catalyst with engineered interfaces between the (111) and (100) facets that promote the coupling of C1 and C2 species, leading to enhanced production of n-propanol.

    • Yuanjie Pang
    • Jun Li
    • David Sinton
    Article
  • Samarium iodide is a remarkably useful and mild reductant in organic synthesis, but its use can be problematic due to the need for (super)stoichiometric loadings. Now a method that employs samarium iodide as a catalyst—without the need for a stoichiometric co-reductant—is reported. Loadings as low as 5% are shown to catalyse radical cyclization cascades.

    • Huan-Ming Huang
    • Joseph J. W. McDouall
    • David J. Procter
    Article
  • Hydrogen atom transfer processes are commonly encountered in chemical and biological systems. Here the authors report a redox-neutral hydrogen atom transfer through the activation of hydrosilanes with a Lewis base. Further, they demonstrate that this initial step can be directed towards hydrosilylation or polymerization depending on the choice of catalyst.

    • Parham Asgari
    • Yuanda Hua
    • Junha Jeon
    Article
  • The selective catalytic oxidation of ammonia with palladium is an important reaction in the context of NOx abatement, although limited structural information about the catalyst under reaction conditions is available. Now, an operando study reveals the speciation of palladium and identifies crucial palladium–nitride species.

    • Ellie K. Dann
    • Emma K. Gibson
    • Peter P. Wells
    Article
  • MOFs have found limited application in catalysis so far, as the result of their limited thermal and hydrolytic stability. Now, non-thermal plasma is shown to be able to promote and sustain the activity of HKUST-1 and other MOFs towards the water–gas shift reaction despite the presence of water. [In a previous version of the graphical abstract, CO conversion was incorrectly labelled CO2 conversion.]

    • Shaojun Xu
    • Sarayute Chansai
    • Xiaolei Fan
    Article
  • The ability to functionalize normally unreactive sites in molecules opens up tremendous flexibility in synthesis design and structural modification, in addition to reducing the need for multiple steps or highly reactive reagents. Now, a dual-catalytic strategy, demonstrated with the methods for the β-arylation of aliphatic alcohols and for the enantioselective γ-hydroarylation of allylic alcohols, is reported for such reactions.

    • Dawid Lichosyt
    • Yang Zhang
    • Paweł Dydio
    Article
  • Despite the many recent developments in iron-catalysed cross-couplings, the mechanistic understanding of these reactions is lacking compared to the more studied palladium and nickel variants. Here, the authors find that during iron-catalysed Negishi reactions the diphosphine ligand predominately binds to the zinc—rather than the iron—centre.

    • Antonis M. Messinis
    • Stephen L. J. Luckham
    • Robin B. Bedford
    Article
  • Carbon-based single-atom catalysts usually rely on nitrogen co-doping to stabilize the single metal atoms as metal–N4 moieties. Now, Wei, Yao and colleagues make use of operando techniques to show that under alkaline hydrogen evolution reaction conditions the Co–N4 active site undergoes structural distortion to a HO–Co–N2 configuration.

    • Linlin Cao
    • Qiquan Luo
    • Shiqiang Wei
    Article
  • Silicon–hydride materials are attractive candidates for the photoreduction of carbon dioxide into fuels, although they have only worked stoichiometrically so far. Now, Ozin and co-workers show how decorating silicon nanosheets with palladium nanoparticles renders the process catalytic.

    • Chenxi Qian
    • Wei Sun
    • Geoffrey A. Ozin
    Article
  • Single-atom catalysts are receiving much attention, but insights into their active sites or the differences in reactivity with conventional nanoparticles are still controversial. Now, operando studies on CO oxidation with Ir/MgAl2O4 accompanied by computational investigations reveal important features of this class of catalyst.

    • Yubing Lu
    • Jiamin Wang
    • Ayman M. Karim
    Article
  • The use of electrochemistry in asymmetric catalysis can prove challenging, not least due to the difficulty of achieving chemo- and stereoselectivity in combination with very reactive electrochemically generated intermediates. Here, catalytic asymmetric electrosynthesis is reported for the synthesis of 1,4-dicarbonyl compounds with high enantiomeric excess, including compounds with all-carbon quaternary stereocentres. The chiral-at-metal catalyst activates the substrate towards anodic oxidation in addition to controlling the enantioselectivity of the process.

    • Xiaoqiang Huang
    • Qi Zhang
    • Eric Meggers
    Article
  • Reusable catalysts based on earth-abundant metals could offer inexpensive and sustainable routes in organic synthesis. Here a nickel catalyst—formed by pyrolysis of a nickel complex on a γ-Al2O3 support—is shown to be highly active for synthesis of primary amines via reductive amination. The catalyst operates with aqueous ammonia and either aldehydes or ketones, tolerating a wide range of functional groups.

    • G. Hahn
    • P. Kunnas
    • R. Kempe
    Article
  • The electroreduction of carbon dioxide to formate represents a desirable strategy for the production of fuels and commodity chemicals. Now, guided by density functional theory, Cui and colleagues report CuSn3 alloys that exhibit high activity and selectivity for formate production from CO2 electroreduction at potentials as low as −0.5 V versus RHE.

    • Xueli Zheng
    • Yongfei Ji
    • Yi Cui
    Article
  • Copper-based catalysts, especially the so-called oxide-derived copper, are capable of producing multicarbon species from electrochemical CO2 reduction. However, little is known about their active sites despite intensive research efforts. Now, Lum and Ager show that oxide-derived copper catalysts have three distinct product-specific sites for the formation of C2+ chemicals, unlike polycrystalline copper or (111)- and (100)-oriented copper films which show no evidence of product specific sites.

    • Yanwei Lum
    • Joel W. Ager
    Article
  • Predicting highly enantioselective ligands for a given asymmetric catalytic reaction is very challenging, but could greatly reduce the need for high-throughput, trial-and-error experimentation. Here, the authors report a freely available, automated tool to identify appropriate chiral ligands for given substrates in asymmetric catalysis.

    • Anthony R. Rosales
    • Jessica Wahlers
    • Per-Ola Norrby
    Article
  • Unlike the more common C–H functionalization, methods for the functionalization of C–C bonds are scarce. Here, Ackermann and co-workers show that an inexpensive manganese catalyst is capable of selectively activating C–C bonds for alkylations, alkenylations, and allylations in water.

    • Hui Wang
    • Isaac Choi
    • Lutz Ackermann
    Article
  • Catalysts are dynamic species, whose structure can change over the course of a reaction. Here, structural changes are mapped for cobalt–palladium nanoparticles during CO oxidation, showing a reconstruction to CoOx on palladium surfaces. Furthermore, the composition-dependent reconstruction can be correlated with the trend in catalytic activity.

    • Cheng Hao Wu
    • Chang Liu
    • Miquel B. Salmeron
    Article